Skip to main content

The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

Although the field of genetics has grown by leaps and bounds within the last decade due to the completion and availability of the human genome sequence, transcriptional regulation still cannot be explained solely by an individual’s DNA sequence. Complex coordination and communication between a plethora of well-conserved chromatin modifying factors are essential for all organisms. Regulation of gene expression depends on histone post translational modifications (HPTMs), DNA methylation, histone variants, remodeling enzymes, and effector proteins that influence the structure and function of chromatin, which affects a broad spectrum of cellular processes such as DNA repair, DNA replication, growth, and proliferation. If mutated or deleted, many of these factors can result in human disease at the level of transcriptional regulation. The common goal of recent studies is to understand disease states at the stage of altered gene expression. Utilizing information gained from new high-throughput techniques and analyses will aid biomedical research in the development of treatments that work at one of the most basic levels of gene expression, chromatin. This chapter will discuss the effects of and mechanism by which histone modifications and DNA methylation affect transcriptional regulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J et al (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–734

    PubMed  CAS  Google Scholar 

  • Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in tetrahymena micronuclei. Cell 20(1):55–64

    PubMed  CAS  Google Scholar 

  • Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90(24):11995–11999

    PubMed  CAS  Google Scholar 

  • Baker SP, Phillips J, Anderson S, Qiu Q, Shabanowitz J, Smith MM et al (2010) Histone H3 thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12(3):294–298

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    PubMed  CAS  Google Scholar 

  • Bannister AJ, Schneider R, Kouzarides T (2002) Histone methylation: dynamic or static? Cell 109(7):801–806

    PubMed  CAS  Google Scholar 

  • Bardwell VJ, Treisman R (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8(14):1664–1677

    PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837

    PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405(6785):482–485

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    PubMed  CAS  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203(4):971–983

    PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99(5):451–454

    PubMed  CAS  Google Scholar 

  • Black JC, Whetstine JR (2011) Chromatin landscape: methylation beyond transcription. Epigenetics Off J DNA Methylation Soc 6(1):9–15

    CAS  Google Scholar 

  • Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science (New York, NY) 317(5845):1760–1764

    CAS  Google Scholar 

  • Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C et al (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 24(2):336–346

    PubMed  CAS  Google Scholar 

  • Brown CE, Howe L, Sousa K, Alley SC, Carrozza MJ, Tan S et al (2001) Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit. Science (New York, NY) 292(5525):2333–2337

    CAS  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY et al (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84(6):843–851

    PubMed  CAS  Google Scholar 

  • Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obes Rev Off J Int Assoc Study Obes 10(4):383–392

    CAS  Google Scholar 

  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592

    PubMed  CAS  Google Scholar 

  • Champagne KS, Kutateladze TG (2009) Structural insight into histone recognition by the ING PHD fingers. Curr Drug Targets 10(5):432–441

    PubMed  CAS  Google Scholar 

  • Chen C, Nott TJ, Jin J, Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12(10):629–642

    PubMed  CAS  Google Scholar 

  • Clark SJ, Harrison J, Frommer M (1995) CpNpG methylation in mammalian cells. Nat Genet 10(1):20–27

    PubMed  CAS  Google Scholar 

  • Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T et al (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442(7100):307–311

    PubMed  CAS  Google Scholar 

  • Cui K, Zang C, Roh TY, Schones DE, Childs RW, Peng W et al (2009) Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell 4(1):80–93

    PubMed  CAS  Google Scholar 

  • Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M et al (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553

    PubMed  CAS  Google Scholar 

  • Delaval K, Wagschal A, Feil R (2006) Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. BioEssays News Rev Mol Cell Dev Biol 28(5):453–459

    CAS  Google Scholar 

  • Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M, Faretta M et al (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science (New York, NY) 295(5557):1079–1082

    Google Scholar 

  • Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353

    PubMed  CAS  Google Scholar 

  • Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF et al (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10(8):2709–2721

    PubMed  CAS  Google Scholar 

  • Ernst J, Kellis M (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat Biotechnol 28(8):817–825

    PubMed  CAS  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298

    PubMed  CAS  Google Scholar 

  • Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K et al (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol (CB) 12(12):1052–1058

    CAS  Google Scholar 

  • Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473(7347):398–402

    PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J et al (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438(7071):1116–1122

    PubMed  CAS  Google Scholar 

  • Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L et al (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20(12):1557–1562

    PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102(30):10604–10609

    PubMed  CAS  Google Scholar 

  • Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS et al (2007) Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128(3):505–518

    PubMed  CAS  Google Scholar 

  • Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    PubMed  CAS  Google Scholar 

  • Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, Hu C et al (2010) Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol Cell 39(2):234–246

    PubMed  CAS  Google Scholar 

  • Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R et al (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11(13):1640–1650

    PubMed  CAS  Google Scholar 

  • Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates JR 3rd et al (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94(1):45–53

    PubMed  CAS  Google Scholar 

  • Greeson NT, Sengupta R, Arida AR, Jenuwein T, Sanders SL (2008) Di-methyl H4 lysine 20 targets the checkpoint protein Crb2 to sites of DNA damage. J Biol Chem 283(48):33168–33174

    PubMed  CAS  Google Scholar 

  • Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W et al (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453(7197):948–951

    PubMed  CAS  Google Scholar 

  • Hampsey M, Reinberg D (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113(4):429–432

    PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405(6785):486–489

    PubMed  CAS  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ et al (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111(3):369–379

    PubMed  CAS  Google Scholar 

  • Hatada I, Fukasawa M, Kimura M, Morita S, Yamada K, Yoshikawa T et al (2006) Genome-wide profiling of promoter methylation in human. Oncogene 25(21):3059–3064

    PubMed  CAS  Google Scholar 

  • Hebbes TR, Thorne AW, Crane-Robinson C (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7(5):1395–1402

    PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Google Scholar 

  • Heitz E (1929) Heterochromatin, chromocentren, chromomenen. Berichte der Deutschen Botanischen Gesellschaft 47:274–284

    Google Scholar 

  • Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet (TIG) 19(5):269–277

    CAS  Google Scholar 

  • Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401(6750):301–304

    PubMed  CAS  Google Scholar 

  • Hervouet E, Vallette FM, Cartron PF (2009) Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenet Off J DNA Methyl Soc 4(7):487–499

    PubMed  CAS  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ et al (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411

    PubMed  CAS  Google Scholar 

  • Iioka H, Doerner SK, Tamai K (2009) Kaiso is a bimodal modulator for Wnt/beta-catenin signaling. FEBS Lett 583(4):627–632

    PubMed  CAS  Google Scholar 

  • Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6(1):e22

    PubMed  Google Scholar 

  • Iqbal K, Jin SG, Pfeifer GP, Szabo PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108(9):3642–3647

    PubMed  CAS  Google Scholar 

  • Issa JP (2000) CpG-island methylation in aging and cancer. Curr Top Microbiol Immunol 249:101–118

    PubMed  CAS  Google Scholar 

  • Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM, Nakamura T et al (2007) Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 27(5):1889–1903

    PubMed  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466(7310):1129–1133

    PubMed  CAS  Google Scholar 

  • Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH et al (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128(6):1077–1088

    PubMed  CAS  Google Scholar 

  • Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science (New York, NY) 288(5470):1422–1425

    CAS  Google Scholar 

  • Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J et al (2010) Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 20(2):170–179

    PubMed  CAS  Google Scholar 

  • Jenuwein T (2001) Re-SET-ting heterochromatin by histone methyltransferases. Trends Cell Biol 11(6):266–273

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY) 293(5532):1074–1080

    CAS  Google Scholar 

  • Jones PA, Wolkowicz MJ, Rideout WM 3rd, Gonzales FA, Marziasz CM, Coetzee GA et al (1990) De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc Natl Acad Sci USA 87(16):6117–6121

    PubMed  CAS  Google Scholar 

  • Jorgensen HF, Ben-Porath I, Bird AP (2004) Mbd1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains. Mol Cell Biol 24(8):3387–3395

    PubMed  CAS  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20(6):971–978

    PubMed  CAS  Google Scholar 

  • Josse J, Kaiser AD, Kornberg A (1961) Enzymatic synthesis of deoxyribonucleic acid. VIII. Frequencies of nearest neighbor base sequences in deoxyribonucleic acid. J Biol Chem 236:864–875

    PubMed  CAS  Google Scholar 

  • Kacem S, Feil R (2009) Chromatin mechanisms in genomic imprinting. Mamm Genome Off J Int Mamm Genome Soc 20(9–10):544–556

    CAS  Google Scholar 

  • Kanduri C, Pant V, Loukinov D, Pugacheva E, Qi CF, Wolffe A et al (2000) Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol (CB) 10(14):853–856

    CAS  Google Scholar 

  • Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107(7):2926–2931

    PubMed  CAS  Google Scholar 

  • Kaufman PD, Rando OJ (2010) Chromatin as a potential carrier of heritable information. Curr Opin Cell Biol 22(3):284–290

    PubMed  CAS  Google Scholar 

  • Keogh MC, Podolny V, Buratowski S (2003) Bur1 kinase is required for efficient transcription elongation by RNA polymerase II. Mol Cell Biol 23(19):7005–7018

    PubMed  CAS  Google Scholar 

  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123(4):593–605

    PubMed  CAS  Google Scholar 

  • Kim H, Kang K, Kim J (2009a) AEBP2 as a potential targeting protein for polycomb repression complex PRC2. Nucleic Acids Res 37(9):2940–2950

    PubMed  CAS  Google Scholar 

  • Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA et al (2009b) RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137(3):459–471

    PubMed  CAS  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    PubMed  CAS  Google Scholar 

  • Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P et al (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442(7100):312–316

    PubMed  CAS  Google Scholar 

  • Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P et al (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128(5):889–900

    PubMed  CAS  Google Scholar 

  • Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J et al (2011) Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8(2):200–213

    PubMed  CAS  Google Scholar 

  • Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41(3):376–381

    PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    PubMed  CAS  Google Scholar 

  • Kouzarides T, Berger S (2007) Chromatin modifications and their mechanisms of action. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Plainview, pp 191–206

    Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science (New York, NY) 324(5929):929–930

    CAS  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23(12):4207–4218

    PubMed  CAS  Google Scholar 

  • Lange M, Kaynak B, Forster UB, Tonjes M, Fischer JJ, Grimm C et al (2008) Regulation of muscle development by DPF3, a novel histone acetylation and methylation reader of the BAF chromatin remodeling complex. Genes Dev 22(17):2370–2384

    PubMed  CAS  Google Scholar 

  • Larschan E, Winston F (2001) The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev 15(15):1946–1956

    PubMed  CAS  Google Scholar 

  • Larsen F, Gundersen G, Lopez R, Prydz H (1992) CpG islands as gene markers in the human genome. Genomics 13(4):1095–1107

    PubMed  CAS  Google Scholar 

  • Lee MG, Wynder C, Cooch N, Shiekhattar R (2005) An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437(7057):432–435

    PubMed  CAS  Google Scholar 

  • Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L et al (2007a) Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell 131(6):1084–1096

    PubMed  CAS  Google Scholar 

  • Lee MG, Norman J, Shilatifard A, Shiekhattar R (2007b) Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128(5):877–887

    PubMed  CAS  Google Scholar 

  • Lee J, Jang SJ, Benoit N, Hoque MO, Califano JA, Trink B et al (2010) Presence of 5-methylcytosine in CpNpG trinucleotides in the human genome. Genomics 96(2):67–72

    PubMed  CAS  Google Scholar 

  • Li W, Liu M (2011) Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids 2011:870726

    PubMed  Google Scholar 

  • Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278(11):8897–8903

    PubMed  CAS  Google Scholar 

  • Li B, Carey M, Workman JL (2007a) The role of chromatin during transcription. Cell 128(4):707–719

    PubMed  CAS  Google Scholar 

  • Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL (2007b) Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science (New York, NY) 316(5827):1050–1054

    CAS  Google Scholar 

  • Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322

    PubMed  CAS  Google Scholar 

  • Liu X, Tesfai J, Evrard YA, Dent SY, Martinez E (2003) c-myc transformation domain recruits the human STAGA complex and requires TRRAP and GCN5 acetylase activity for transcription activation. J Biol Chem 278(22):20405–20412

    PubMed  CAS  Google Scholar 

  • Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260

    PubMed  CAS  Google Scholar 

  • Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469(7330):343–349

    PubMed  CAS  Google Scholar 

  • Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ 3rd et al (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461(7265):762–767

    PubMed  CAS  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6(11):838–849

    PubMed  CAS  Google Scholar 

  • Martinez E, Kundu TK, Fu J, Roeder RG (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273(37):23781–23785

    PubMed  CAS  Google Scholar 

  • Mateescu B, Bourachot B, Rachez C, Ogryzko V, Muchardt C (2008) Regulation of an inducible promoter by an HP1beta-HP1gamma switch. EMBO Rep 9(3):267–272

    PubMed  CAS  Google Scholar 

  • McMahon SB, Wood MA, Cole MD (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-myc. Mol Cell Biol 20(2):556–562

    PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437(7057):436–439

    PubMed  CAS  Google Scholar 

  • Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57(12):3189–3198

    PubMed  CAS  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560

    PubMed  CAS  Google Scholar 

  • Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26(37):5341–5357

    PubMed  CAS  Google Scholar 

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    PubMed  CAS  Google Scholar 

  • Nekrasov M, Klymenko T, Fraterman S, Papp B, Oktaba K, Kocher T et al (2007) Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at polycomb target genes. EMBO J 26(18):4078–4088

    PubMed  CAS  Google Scholar 

  • Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    PubMed  CAS  Google Scholar 

  • Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ et al (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94(1):35–44

    PubMed  CAS  Google Scholar 

  • Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al (2005) hDOT1L links histone methylation to leukemogenesis. Cell 121(2):167–178

    PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    PubMed  CAS  Google Scholar 

  • Ordovas JM, Smith CE (2010) Epigenetics and cardiovascular disease. Nat Rev Cardiol 7(9):510–519

    PubMed  CAS  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20(21):2922–2936

    PubMed  CAS  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527

    PubMed  CAS  Google Scholar 

  • Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    PubMed  CAS  Google Scholar 

  • Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA (2005) Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433(7024):434–438

    PubMed  CAS  Google Scholar 

  • Prokhortchouk E, Defossez PA (2008) The cell biology of DNA methylation in mammals. Biochimica Et Biophysica Acta 1783(11):2167–2173

    PubMed  CAS  Google Scholar 

  • Qiu H, Hu C, Hinnebusch AG (2009) Phosphorylation of the Pol II CTD by KIN28 enhances BUR1/BUR2 recruitment and Ser2 CTD phosphorylation near promoters. Mol Cell 33(6):752–762

    PubMed  CAS  Google Scholar 

  • Rand E, Ben-Porath I, Keshet I, Cedar H (2004) CTCF elements direct allele-specific undermethylation at the imprinted H19 locus. Curr Biol (CB) 14(11):1007–1012

    CAS  Google Scholar 

  • Reeves WM, Hahn S (2005) Targets of the Gal4 transcription activator in functional transcription complexes. Mol Cell Biol 25(20):9092–9102

    PubMed  CAS  Google Scholar 

  • Reik W, Lewis A (2005) Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6(5):403–410

    PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF et al (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598

    PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA et al (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323

    PubMed  CAS  Google Scholar 

  • Rosenfeld JA, Wang Z, Schones DE, Zhao K, DeSalle R, Zhang MQ (2009) Determination of enriched histone modifications in non-genic portions of the human genome. BMC Genomics 10:143

    PubMed  Google Scholar 

  • Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC et al (2002) Active genes are tri-methylated at K4 of histone H3. Nature 419(6905):407–411

    PubMed  CAS  Google Scholar 

  • Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J et al (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16(1):17–22

    PubMed  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103(5):1412–1417

    PubMed  CAS  Google Scholar 

  • Scarano E, Iaccarino M, Grippo P, Parisi E (1967) The heterogeneity of thymine methyl group origin in DNA pyrimidine isostichs of developing sea urchin embryos. Proc Natl Acad Sci USA 57(5):1394–1400

    PubMed  CAS  Google Scholar 

  • Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G et al (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262

    PubMed  CAS  Google Scholar 

  • Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25(1):1–14

    PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953

    PubMed  CAS  Google Scholar 

  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19(6):857–864

    PubMed  CAS  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99

    PubMed  CAS  Google Scholar 

  • Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA 100(23):13225–13230

    PubMed  CAS  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science (New York, NY) 311(5762):844–847

    CAS  Google Scholar 

  • Simic R, Lindstrom DL, Tran HG, Roinick KL, Costa PJ, Johnson AD et al (2003) Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J 22(8):1846–1856

    PubMed  CAS  Google Scholar 

  • Simon JA, Kingston RE (2009) Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 10(10):697–708

    PubMed  CAS  Google Scholar 

  • Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev (MMBR) 64(2):435–459

    CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    PubMed  CAS  Google Scholar 

  • Straussman R, Nejman D, Roberts D, Steinfeld I, Blum B, Benvenisty N et al (2009) Developmental programming of CpG island methylation profiles in the human genome. Nat Struct Mol Biol 16(5):564–571

    PubMed  CAS  Google Scholar 

  • Swartz MN, Trautner TA, Kornberg A (1962) Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem 237:1961–1967

    PubMed  CAS  Google Scholar 

  • Szabo P, Tang SH, Rentsendorj A, Pfeifer GP, Mann JR (2000) Maternal-specific footprints at putative CTCF sites in the H19 imprinting control region give evidence for insulator function. Curr Biol (CB) 10(10):607–610

    CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (New York, NY) 324(5929):930–935

    CAS  Google Scholar 

  • Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99(6):3740–3745

    PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P et al (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439(7078):811–816

    PubMed  CAS  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in drosophila polytene nuclei. Cell 69(2):375–384

    PubMed  CAS  Google Scholar 

  • Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19(3):381–391

    PubMed  CAS  Google Scholar 

  • Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26(24):9185–9195

    PubMed  CAS  Google Scholar 

  • Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67(3):946–950

    PubMed  CAS  Google Scholar 

  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32(14):4100–4108

    PubMed  CAS  Google Scholar 

  • van Leeuwen F, Gafken PR, Gottschling DE (2002) Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109(6):745–756

    PubMed  Google Scholar 

  • Vettese-Dadey M, Grant PA, Hebbes TR, Crane-Robinson C, Allis CD, Workman JL (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J 15(10):2508–2518

    PubMed  CAS  Google Scholar 

  • Waddington CH (1957) The strategy of the genes; a discussion of some aspects of theoretical biology. Allen & Unwin, London

    Google Scholar 

  • Walter J (2011) An epigenetic tet a tet with pluripotency. Cell Stem Cell 8(2):121–122

    PubMed  CAS  Google Scholar 

  • Wang S, Robertson GP, Zhu J (2004a) A novel human homologue of drosophila polycomblike gene is up-regulated in multiple cancers. Gene 343(1):69–78

    PubMed  CAS  Google Scholar 

  • Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L et al (2004b) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science (New York, NY) 306(5694):279–283

    CAS  Google Scholar 

  • Wang YA, Kamarova Y, Shen KC, Jiang Z, Hahn MJ, Wang Y et al (2005) DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther 4(10):1138–1143

    PubMed  CAS  Google Scholar 

  • Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903

    PubMed  CAS  Google Scholar 

  • Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al (2009) LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138(4):660–672

    PubMed  CAS  Google Scholar 

  • Warren RA (1980) Modified bases in bacteriophage DNAs. Annu Rev Microbiol 34:137–158

    PubMed  CAS  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862

    PubMed  CAS  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125(3):467–481

    PubMed  CAS  Google Scholar 

  • Wood A, Schneider J, Dover J, Johnston M, Shilatifard A (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278(37):34739–34742

    PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    PubMed  CAS  Google Scholar 

  • Wossidlo M, Nakamura T, Lepikhov K, Marques CJ, Zakhartchenko V, Boiani M et al (2011) 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2:241

    PubMed  Google Scholar 

  • Wyatt GR, Cohen SS (1952) A new pyrimidine base from bacteriophage nucleic acids. Nature 170(4338):1072–1073

    PubMed  CAS  Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL et al (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121(6):859–872

    PubMed  CAS  Google Scholar 

  • Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH et al (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17(5):654–663

    PubMed  CAS  Google Scholar 

  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J et al (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125(3):483–495

    PubMed  CAS  Google Scholar 

  • Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H et al (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25(6):801–812

    PubMed  CAS  Google Scholar 

  • Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318

    PubMed  CAS  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9(3):206–218

    PubMed  CAS  Google Scholar 

  • Yang Y, Lu Y, Espejo A, Wu J, Xu W, Liang S et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40(6):1016–1023

    PubMed  CAS  Google Scholar 

  • Yoder JA, Bestor TH (1998) A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 7(2):279–284

    PubMed  CAS  Google Scholar 

  • Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM (2010) Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature 466(7303):258–262

    PubMed  CAS  Google Scholar 

  • Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360

    PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126(6):1189–1201

    PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, NY) 322(5902):750–756

    CAS  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311

    PubMed  CAS  Google Scholar 

  • Zheng S, Wyrick JJ, Reese JC (2010) Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A. Mol Cell Biol 30(14):3635–3645

    PubMed  CAS  Google Scholar 

  • Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P et al (2005) Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell 20(4):601–611

    PubMed  CAS  Google Scholar 

  • Zollman S, Godt D, Prive GG, Couderc JL, Laski FA (1994) The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in drosophila. Proc Natl Acad Sci USA 91(22):10717–10721

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Miller, J.L., Grant, P.A. (2013). The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_13

Download citation

Publish with us

Policies and ethics