Skip to main content
Log in

Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors

  • Research Paper
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

Inhibition of aromatase, a cytochrome P450 that converts androgens to estrogens, is relevant in the therapeutic control of breast cancer. We investigate this inhibition using a three-dimensional quantitative structure-activity relationship (3D QSAR) method known as Comparative Molecular Field Analysis, CoMFA [Cramer III, R.D. et al., J. Am. Chem. Soc., 110 (1988) 5959]. We analyzed the data for 50 steroid inhibitors [Numazawa, M. et al., J. Med. Chem., 37 (1994) 2198, and references cited therein] assayed against androstenedione on human placental microsomes. An initial CoMFA resulted in a three-component model for log(1/Ki), with an explained variance r2 of 0.885, and a cross-validated q2 of 0.673. Chemometric studies were performed using GOLPE [Baroni, M. et al., Quant. Struct.-Act. Relatsh., 12 (1993) 9]. The CoMFA/GOLPE model is discussed in terms of robustness, predictivity, explanatory power and simplicity. After randomized exclusion of 25 or 10 compounds (repeated 25 times), the q2 for one component was 0.62 and 0.61, respectively, while r2 was 0.674. We demonstrate that the predictive r2 based on the mean activity (Ym) of the training set is misleading, while the test set Ym-based predictive r2 index gives a more accurate estimate of external predictivity. Using CoMFA, the observed differences in aromatase inhibition among C6-substituted steroids are rationalized at the atomic level. The CoMFA fields are consistent with known, potent inhibitors of aromatase, not included in the model. When positioned in the same alignment, these compounds have distinct features that overlap with the steric and electrostatic fields obtained in the CoMFA model. The presence of two hydrophobic binding pockets near the aromatase active site is discussed: a steric bulk tolerant one, common for C4, C6-alpha and C7-alpha substitutents, and a smaller one at the C6-beta region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ganong, W.F., Review of Medical Physiology, 16th ed., Appleton and Lange, Norwalk, CT, 1993, p. 780.

    Google Scholar 

  2. Chen, S., Besman, M.J., Shively, J.E., Yanagibashi, K. and Hall, P.F., Drug Metab. Rev., 20 (1989) 511.

    Google Scholar 

  3. Kellis, J.J. and Vickery, L.E., J. Biol. Chem., 262 (1987) 4413.

    Google Scholar 

  4. Thompson, E.A.J. and Siiteri, P.K., J. Biol. Chem., 249 (1974) 5373.

    Google Scholar 

  5. Brodie, A.M.H., Brodie, H.B., Callard, G., Robinson, C., Roselli, C. and Santen, R., J. Steroid Biochem. Mol. Biol., 44 (1993) 321.

    Google Scholar 

  6. Brodie, A.M.H. and Santen, R.J., Breast Cancer Res. Treat., 30 (1994) 1.

    Google Scholar 

  7. Brodie, A.M.H., J. Steroid Biochem. Mol. Biol., 49 (1994) 281.

    Google Scholar 

  8. Hervey, H.A., Lipton, A. and Santen, R.J., Cancer Res. (Suppl.), 42 (1982) 3261s.

  9. Reed, M.J., Breast Cancer Res. Treat., 30 (1994) 7.

    Google Scholar 

  10. Strobl, J.S., In Craig, C.R. and Stitzel, R.E. (Eds.) Modern Pharmacology, 4th ed., Little, Brown and Co., Boston, MA, 1994 pp. 747–759.

    Google Scholar 

  11. Hartmann, R.W., Bayer, H. and Grun, G., J. Med. Chem., 37 (1994) 1275.

    Google Scholar 

  12. Chen, S. and Zhou, D., J. Biol. Chem., 267 (1992) 22587.

    Google Scholar 

  13. Chen, S., Zhou, D., Swiderek, K., Kadohama, N., Osawa, Y. and Hall, P.F., J. Steroid Biochem. Mol. Biol., 44 (1993) 347.

    Google Scholar 

  14. Amarnch, B., Corbin, C.J., Peterson, J.A., Simpson, E.R. and Graham-Lorence, S., Mol. Endocrinol., 7 (1993) 1617.

    Google Scholar 

  15. Kadohama, N., Yarborough, C., Zhou, D., Chen, S. and Osawa, Y., J. Steroid Biochem. Mol. Biol., 43 (1992) 693.

    Google Scholar 

  16. Zhou, D., Pompon, D. and Chen, S., Proc. Natl. Acad. Sci. USA, 88 (1991) 410.

    Google Scholar 

  17. Zhou, D., Korzekwa, K.R., Poulos, T. and Chen, S., J. Biol. Chem., 267 (1992) 762.

    Google Scholar 

  18. Zhou, D., Cam, L.L., Laughton, C.A., Korzekwa, K.R. and Chen, S.U., J. Biol. Chem., 269 (1994) 19501.

    Google Scholar 

  19. Laughton, C.A., Zvelebil, M.J.J.M. and Neidle, S., J. Steroid Biochem. Mol. Biol., 44 (1993) 399.

    Google Scholar 

  20. Poulos, T.L., Finzel, B.C. and Howard, A.J., J. Mol. Biol., 195 (1987) 687.

    Google Scholar 

  21. Oprea, T.I., Ho, C.M.W. and Marshall, G.R., In Reynolds, C.H., Holloway, M.K. and Cox, H.K. (Eds.) Computer-Aided Molecular Design, ACS Symposium Series Vol. 589, Washington, DC, 1995, pp. 64–81.

  22. Green, S.M. and Marshall, G.R., Trends Pharmacol. Sci., 16 (1995) 285.

    Google Scholar 

  23. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  24. Numazawa, M., Mutsumi, A., Hoshi, K. and Koike, R., Biochem. Biophys. Res. Commun., 160 (1989) 1009.

    Google Scholar 

  25. Numazawa, M., Mutsumi, A., Hoshi, K., Oshibe, M., Ishikawa, E. and Kigawa, H., J. Med. Chem., 34 (1991) 2496.

    Google Scholar 

  26. Numazawa, M. and Mutsumi, A., Biochem. Biophys. Res., Commun., 177 (1991) 401.

    Google Scholar 

  27. Numazawa, M. and Oshibe, M., J. Med. Chem., 37 (1994) 1312.

    Google Scholar 

  28. Numazawa, M., Mutsumi, A., Tachibana, M. and Hoshi, K., J. Med. Chem., 37 (1994) 2198.

    Google Scholar 

  29. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Quant. Struct.-Act. Relatsh., 12 (1993) 9.

    Google Scholar 

  30. Topliss, J.G. and Costello, R.J., J. Med. Chem., 15 (1972) 1066.

    Google Scholar 

  31. Cramer III, R.D. and Bunce, J.D., In Hadzi, D. and Jerman-Blazic, B. (Eds.) QSAR in Drug Design and Toxicology, Elsevier, Amstdrdam, The Netherlands, 1987, pp. 3–12.

    Google Scholar 

  32. Wold, S., Johansson, E. and Cocchi, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 523–550.

    Google Scholar 

  33. Wold, S., Esbensen, K. and Geladi, P., Chemometrics Intelligent Lab. Syst., 2 (1987) 37.

    Google Scholar 

  34. Cramer III, R.D., Bunce, J.D., Patterson, D.E. and Frank, I.E., Quant. Struct.-Act. Relatsh., 7 (1988) 18.

    Google Scholar 

  35. Cruciani, G., Baroni, M., Clementi, S., Costantino, G., Riganelli, D. and Skagerberg, B., J. Chemometrics, 6 (1992) 335.

    Google Scholar 

  36. Cramer III, R.D., DePriest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Application, ESCOM, Leiden, The Netherlands, 1993, pp. 443–485.

    Google Scholar 

  37. Waller, C.L., Oprea, T.I., Giolitti, A. and Marshall, G.R., J. Med. Chem., 36 (1993) 4152.

    Google Scholar 

  38. Oprea, T.I., Waller, C.L. and Marshall, G.R., J. Med. Chem., 37 (1994) 2206.

    Google Scholar 

  39. Goodford, P.J., J. Am. Chem. Soc., 28 (1985) 849.

    Google Scholar 

  40. Cruciani, G., Clementi, S. and Baroni, M., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 551–564.

    Google Scholar 

  41. Cruciani, G. and Watson, K.A., J. Med. Chem., 37 (1994) 2589.

    Google Scholar 

  42. Martin, Y., Bures, M., Danaher, E. and DeLazzer, J., In Wermuth, C.G. (Ed.). Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure-Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, The Netherlands, 1993, pp. 20/2-27.

  43. Jain, A.N., Koile, K. and Chapman, D., J. Med. Chem., 37, (1994) 2315.

    Google Scholar 

  44. Vinter, J., J. Comput.-Aided Mol. Design, 8 (1994) 653.

    Google Scholar 

  45. Oprea, T.I. and Vinter, J.G., In Sanz, F. (Ed.) Proceedings of the 10th European QSAR Symposium, J.R. Prous, Barcelona, Spain, 1995, in press.

    Google Scholar 

  46. Appelt, K., Perspect. Drug Discov. Design, 1 (1993) 23.

    Google Scholar 

  47. Arevalo, J.H., Taussig, M.J. and Wilson, I.A., Nature, 365 (1993) 859.

    Google Scholar 

  48. Stewart, J.J.P., J. Comput.-Aided Mol. Design, 4 (1990) 1.

    Google Scholar 

  49. Weisberg, S., Applied Linear Regression, 2nd ed., Wiley, New York, NY, 1985, pp. 196–239.

    Google Scholar 

  50. Oprea, T.I., Waller, C.L. and Marshall, G.R., Drug Des. Discov., 12 (1994) 29.

    Google Scholar 

  51. Brueggemeier, R.W., Li, P.-K., Moh, P.P. and Katlic, N.E., J. Steroid Biochem. Mol. Biol., 37 (1990) 379.

    Google Scholar 

  52. Li, P.-K. and Brueggemeier, R.W., J. Med. Chem., 33 (1990) 101.

    Google Scholar 

  53. Li, P.-K. and Brueggemeier, R.W., J. Steroid Biochem. Mol. Biol., 36 (1990) 533.

    Google Scholar 

  54. Brueggemeier, R.W., Moh, P.P., Ebrahimian, S. and Darby, M.V., J. Steroid Biochem. Mol. Biol., 44 (1993) 357.

    Google Scholar 

  55. Burkhart, J.P., Peet, N.P., Wright, C.L. and Johnston, J.O., J. Med. Chem., 34 (1991) 1748.

    Google Scholar 

  56. Peet, N.P., Johnston, J.O., Burkhart, J.P. and Wright, C.L., J. Steroid Biochem. Mol. Biol., 44 (1993) 409.

    Google Scholar 

  57. Johnston, J.O., Wright, C.L., Burkhart, J.P. and Peet, N.P., J. Steroid Biochem. Mol. Biol., 44 (1993) 623.

    Google Scholar 

  58. DiSalle, E., Briatico, G., Giudici, D., Ornati, G., Zaccheo, T., Buzzetti, F., Nesi, M. and Panzeri, A., J. Steroid Biochem. Mol. Biol., 49 (1994) 289.

    Google Scholar 

  59. DiSalle, E., Giudici, D., Ornati, G., Briatico, G., D'Alessio, R., Villa, V. and Lombardi, P., J. Steroid Biochem. Mol. Biol., 37 (1990) 369.

    Google Scholar 

  60. Abul-Hajj, Y.J., J. Steroid Biochem., 35 (1990) 139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oprea, T.I., García, A.E. Three-dimensional quantitative structure-activity relationships of steroid aromatase inhibitors. Journal of Computer-Aided Molecular Design 10, 186–200 (1996). https://doi.org/10.1007/BF00355042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355042

Keywords

Navigation