Skip to main content
Log in

Degradation of various amine compounds by mesophilic clostridia

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

From 60 species of the genus Clostridium tested 26 species were able to degrade one to three of the following compounds: betaine, choline, creatine, and ethanolamine. Degradation of betaine and choline was always associated with the formation of trimethylamine as one of the products. Creatine was converted to N-methylhydantoin and with one species (Clostridium sordellii) to sarcosine in addition. The diagnostic value of the ability of clostridial species to degrade the compounds mentioned is discussed. N,N-dimethylglycine, N,N-dimethylethanolamine or sarcosine were not metabolized by the strains tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andreesen JR, Ghazzawi EE, Gottschalk G (1974) The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch Microbiol 96:103–118

    Google Scholar 

  • Appleyeard G, Woods DD (1956) The pathway of creatinine metabolism by Pseudomonas ovalis. J Gen Microbiol 14:351–365

    Google Scholar 

  • Asatoor AM, Simenhoff ML (1965) The origin of urinary dimethylamine. Biochim Biophys Acta 111:384–392

    Google Scholar 

  • Bicknell B, Owens JD (1980) Utilization of methyl amines as nitrogen sources by non-methylotrophs. J Gen Microbiol 117:89–96

    Google Scholar 

  • Blackwell CM, Scarlett FA, Turner JM (1976) Ethanolamine catabolism by bacteria including Escherichia coli. Biochem Soc Transact 4:495–497

    Google Scholar 

  • Boehringer GmbH (1980) Methoden der enzymatischen Lebensmittelanalytik, Firmenschrift

  • Bradbeer C (1965a) The clostridial fermentations of choline and ethanolamine. I. Preparation and properties of cell-free extracts. J Biol Chem 240:4669–4674

    Google Scholar 

  • Bradbeer C (1965b) The clostridial fermentations of choline and ethanolamine. II. Requirements for a cobamide coenzyme by an ethanolamine deaminase. J Biol Chem 240:4675–4681

    Google Scholar 

  • Chang GW, Chang JT (1975) Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature (Lond) 254:150–151

    Google Scholar 

  • Chung KT (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl Environ Microbiol 31:342–348

    Google Scholar 

  • Claus D, Lack P, Neu B (1983) DSM Catalogue of strains, 3rd ed. Deutsche Sammlung von Mikroorganismen, Braunschweig, FRG

    Google Scholar 

  • Cohen GN, Nisman B, Raynauld M (1947) Sur la dégradation bactérienne de la choline et de la colamine. Compt Rend Hébd Sc Acad Sci 225:647–650

    Google Scholar 

  • Den Dooren De Jong LE (1927) Über protaminophage Bakterien. Zentbl Bakteriol Parasitenk Infektkr Hyg Abt 2 72:193–232

    Google Scholar 

  • Eneroth P, Lindstedt G (1965) Thin-layer chromatography of betaines and other compounds related to carnitine. Anal Biochem 10:479–485

    Google Scholar 

  • Esders TW, Lynn SY (1985) Purification and properties of creatinine iminohydrolase from Flavobacterium filamentosum J Biol Chem 260:3915–3922

    Google Scholar 

  • Fiebig K, Gottschalk G (1983) Methanogenesis from choline by a coculture of Desulfovibrio sp. and Methanosarcina barkeri. Appl Environ Microbiol 45:161–168

    Google Scholar 

  • Gottwald M, Hippe H, Gottschalk G (1984) Formation of n-butanol from D-glucose by strains of the “Clostridium tetanomorphum” group. Appl Environ Microbiol 48:573–576

    Google Scholar 

  • Hawksworth G, Hill MJ (1971) The formation of nitrosamines by human intestinal flora, Biochem J 122:28p-29p

    Google Scholar 

  • Hayward HR, Stadtman TC (1959) Anaerobic degradation of choline. I. Fermentation of choline by an anaerobic cytochrome producing bacterium, Vibrio cholinicus. J Bacteriol 78:557–561

    Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498

    Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobe laboratory manual, 4th edn. Virginia Polytechnic Institute and State University, Blacksburg, Virginia

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology, vol 3b. Academic Press, New York London, pp 117–132

    Google Scholar 

  • Ingraham VM (1953) The identification of peptide end groups as dimethylamino acids. J Biol Chem 202:193–201

    Google Scholar 

  • Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749

    Google Scholar 

  • Jones JD, Burnett PC (1972) Implication of creatinine and gut flora in the uremic syndrome: induction of creatininase in colon content of the rat by dietary creatinine. Clin Chem 18:280–284

    Google Scholar 

  • Kaplan A, Naugler S (1974) Creatinine hydrolase and creatinine amidinohydrolase. I. Presence in cell free extract of Arthrobacter ureafaciens. Mol Cell Biochem 3:9–15

    Google Scholar 

  • Kopper PH, Robin L (1950) Metabolic breakdown of sarcosine. Biochim Biophys Acta 26:458–460

    Google Scholar 

  • Kortstee GJJ (1970) The aerobic decomposition of choline by microorganisms. Arch Mikrobiol 71:235–244

    Google Scholar 

  • Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396

    Google Scholar 

  • Müller E, Fahlbusch K, Walther R, Gottschalk G (1981) Formation of N,N-dimethylglycine, acetic acid, and butyric acid from betaine by Eubacterium limosum. Appl Environ Microbiol 42:439–445

    Google Scholar 

  • Nakamura S, Okado I, Abe T, Nishida S (1979) Taxomomy of Clostridium tetani and related species. J Gen Microbiol 113: 29–35

    Google Scholar 

  • Naumann E, Hippe H, Gottschalk G (1983) Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by Clostridium sporogenes — Methanosarcina barkeri coculture. Appl Environ Microbiol 45:474–483

    Google Scholar 

  • Neill AR, Grime DW, Dawson RM (1978) Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem J 170:529–535

    Google Scholar 

  • Patton AR, Chism P (1951) Quantitative paper chromatography of amino acids. Anal Chem 23:1683

    Google Scholar 

  • Rabinowitz JC (1963) Intermediates in purin breakdown. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 6. Academic Press, New York, pp 703–713

    Google Scholar 

  • Schink B (1985) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301

    Google Scholar 

  • Schoberth S, Gottschalk G (1969) Considerations on the energy metabolism of Clostridium kluyveri. Arch Mikrobiol 65: 318–328

    Google Scholar 

  • Shieh HS (1964) Aerobic degradation of choline. I. Fermentation of choline by a marine bacterium, Achromobacter cholinophagum n. sp. Can J Microbiol 10:837–842

    Google Scholar 

  • Smith J, Rider LJ, Lerner RP (1967) Chromatography of amino acids, indoles and imidazoles on thin layers of avicel and cellulose and on paper. J Chromatogr 26:449–455

    Google Scholar 

  • Szulmajster J (1958a) Bacterial fermentation of creatinine. I. Isolation of N-methyl-hydantoin. J Bacteriol 75:633–639

    Google Scholar 

  • Szulmajster J (1958b) Bacterial degradation of creatinine. II. Creatinine desimidase. Biochim Biophys Acta 30:154–163

    Google Scholar 

  • Ten Krooden E, Owens CWI (1975) Creatinine metabolism by Clostridium welchii isolated from human faeces. Experientia 31:1270

    Google Scholar 

  • Tsuru D, Oka I, Yoshimoto T (1976) Creatinine decomposing enzymes in Pseudomonas putida. Agr Biol Chem 40:1011–1018

    Google Scholar 

  • Umezu M, Shibata A, Umegaki M (1979) Oxidation of amines by nitrate-reducing bacteria and lactobacilli in sake brewing. J Ferment Technol 57:56–60

    Google Scholar 

  • Unemoto T, Hayahsi M, Miyaki K, Hayashi M (1966) Formation of trimethylamine from DL-carnitine by Serratia marcescens. Biochim Biophys Acta 121:220–222

    Google Scholar 

  • Uwajima T, Terada O (1976) Crystallization and some properties of creatinine deiminase from Corynebacterium lilium. Agr Biol Chem 40:1055–1066

    Google Scholar 

  • Uwajima T, Terada O (1980) Properties of crystalline creatinine deiminase from Corynebacterium lilium. Agr Biol Chem 44:1787–1792

    Google Scholar 

  • Van Eyk HG, Vermaat RJ, Leijnse-Ybema HJ, Leijnse B (1968) The conversion of creatinine by creatinase of bacterial origin. Enzymologia 34:198–202

    Google Scholar 

  • Williams GR, Callely AG (1982) The biodegradation of diethanolamine and triethanolamine by a yellow Gram-negative rod. J Gen Microbiol 128:1203–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, B., Hippe, H. & Gottschalk, G. Degradation of various amine compounds by mesophilic clostridia. Arch. Microbiol. 145, 85–90 (1986). https://doi.org/10.1007/BF00413032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413032

Key words

Navigation