Skip to main content
Log in

Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A physiologically based pharmacokinetic model for diazepam disposition was developed in the rat, incorporating anatomical, physiological, and biochemical parameters, i.e., tissue volume, blood flow rate, serum free fraction, distribution of diazepam into red blood cells, drug metabolism and tissue-to-blood distribution ratio. The serum free fraction of diazepam was determined by equilibrium dialysis at 37°C and was constant over a wide concentration range. Partition of diazepam between plasma and erythrocytes was determined in vitroat 37°C, and the resultant blood-to-plasma concentration ratio was constant over a wide concentration range. The enzymatic parameters (Km, Vmax)of the eliminating organs, i.e., liver, kidney, and lung, previously determined using microsomes, were used for the prediction. The tissue-to-blood distribution ratios inferred by inspection of the data when pseudoequilibrium is reached after i.v. bolus injection of 1.2 mg/kg diazepam were corrected according to the method of Chen and Gross. Predicted diazepam concentration time-course profiles in plasma and various organs or tissues, using an 11-compartmental model, were compared with those observed. Prediction was successful in all compartments including brain, the target organ of diazepam. Scale-up of the disposition kinetics of diazepam from rat to man was also successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in application of the artificial kidney.Chem. Eng. Prog. Symp. Ser. 64:32–44 (1968).

    CAS  Google Scholar 

  2. H. S. G. Chen and J. F. Gross. Physiologically based pharmacokinetic models for anticancer drugs (general review).Cancer Chemother. Pharmacol. 2:85–94 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. K. J. Himmelstein and R. J. Lutz. A review of the applications of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  4. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  5. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1347–1357 (1968).

    Article  Google Scholar 

  6. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. R. L. Dedrick, D. D. Forrester, J. N. Cannon, S. M. El Dareer, and L. B. Mallett. Pharmacokinetics of 1-β-D-arabinofuranosylcytosine (Ara-C) deamination in several species.Biochem. Pharmacol. 22:2405–2417 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man I: Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  9. B. Montandon, R. J. Roberts, and L. J. Fischer. Computer simulation of sulfobromophthalein kinetics in the rat using flow-limited models with extrapolation to man.J. Pharmacokin. Biopharm. 3:277–290 (1975).

    Article  CAS  Google Scholar 

  10. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans.J. Pharm. Sci. 66:1679–1683 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. U. Klotz, K. H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma protein binding of diazepam in man, dog, rabbit, guinea pig and rat.J. Pharmacol. Exp. Ther. 199:67–73 (1976).

    CAS  PubMed  Google Scholar 

  12. Y. Sugiyama, T. Iga, S. Awazu, and M. Hanano. Multiplicity of sulfobromophthalein-binding proteins in Y-fraction from rat liver.J. Pharm. Dyn. 2:193–204 (1979).

    Article  CAS  Google Scholar 

  13. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano. Tissue distribution of14C-diazepam and its metabolities in the rat.Drug. Metab. Dispos. 10:676–679 (1982).

    CAS  PubMed  Google Scholar 

  14. T. Inaba, E. Tsutsumi, W. A. Mahon, and W. Kalow. Biliary excretion of diazepam in the rat.Drug. Metab. Dispos. 2:429–432 (1974).

    CAS  PubMed  Google Scholar 

  15. E. Arnold. A simple method for determining diazepam and its major metabolites in biological fluids: application in bioavailability studies.Acta Pharmacol. Toxicol. 36:335–352 (1975).

    Article  CAS  Google Scholar 

  16. Y. Sasaki and N. Wagner. Measurement of the distribution of cardiac output in unanaes-thetized rats.J. Appl. Physiol. 30:879–884 (1968).

    Google Scholar 

  17. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo.J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. R. J. Lutz, R. L. Dedrick, H.B. Matthews, T. E. Eling, and M. W. Anderson. A preliminary pharmocokinetic model for several chlorinated biphenyls in the rat.Drug. Metab. Dispos. 5:386–396 (1977).

    CAS  PubMed  Google Scholar 

  19. W. S. Spector (ed.).Handbook of Biological Data, W. B. Saunders, Philadelphia, 1956, pp. 163–283.

    Google Scholar 

  20. W. W. Mapleson. An electronic analogue for uptake and exchange of inert gases and other agents.J. Appl. Physiol. 18:197–204 (1963).

    CAS  PubMed  Google Scholar 

  21. P. L. Altman and D. S. Dittmer (eds.).Biology Data Book, 2nd ed. Vol. 3, Bethesda, 1974, pp. 1571–1750.

  22. Y. Igari, Y. Sugiyama, Y. Sawada, T. Iga, and M. Hanano.In vitro andin vivo assessment of hepatic and extrahepatic metabolism of diazepam in the rat.J. Pharm. Sci., in press.

  23. C. L. Litterst, E. G. Mimnaugh, R. L. Reagan, and T. E. Gram. Comparison ofin vitro drug metabolism by lung, liver and kidney of several common laboratory species.Drug. Metab. Dispos. 3:259–265 (1975).

    CAS  PubMed  Google Scholar 

  24. H. S. G. Chen and J. F. Gross. Estimation of tissue to plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

    Article  CAS  Google Scholar 

  25. D. R. Abernethy and D. J. Greenblatt. Effects of desmethyl diazepam on diazepam kinetics: a study of effects of a metabolite on parent drug disposition.Clin. Pharmacol. Ther. 29:757–761 (1981).

    Article  CAS  PubMed  Google Scholar 

  26. U. Klotz and I. Reimann. Clearance of diazepam can be impaired by its major metabolite desmethyl diazepam.Eur. J. Clin. Pharmacol. 21:161–163 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. U. Klotz, G. R. Avant, A. Hoyumpa, S. Schenker, and G. R. Wilkinson. The effects of age and liver disease on the disposition and elimination of diazepam in adult man.J. Clin. Invest. 55:347–359 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. R. L. Dedrick, D. D. Forrester, and D. H. W. Ho.In vitro-in vivo correlation of drug metabolism—deamination of 1-β-D-arabinofuranosylcytosine.Biochem. Pharmacol. 21:1–16 (1972).

    Article  CAS  PubMed  Google Scholar 

  29. J. M. Collins, R. L. Dedrick, F. G. King, J. L. Speyer, and C. E. Myers. Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitonial routes.Clin. Pharmacol. Ther. 28:235–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. M. K. Cassidy and J. B. Houston.In vivo assessment of extrahepatic conjugative metabolism in first-pass effects using the model compound phenol.J. Pharm. Pharmacol. 32:57–59 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. A. Rane, G. R. Wilkinson, and D. G. Shand. Prediction of hepatic extraction ratio fromin vitro measurement of intrinsic clearance.J. Pharmacol. Exp. Ther. 200:420–424 (1977).

    CAS  PubMed  Google Scholar 

  32. J. H. Lin, M. Hayashi, S. Awazu, and M. Hanano. Correlation betweenin vitro andin vivo drug metabolism rate: oxidation of ethoxybenzamide in rat.J. Pharmacokin. Biopharm. 6:327–337 (1978).

    Article  CAS  Google Scholar 

  33. B. R. Smith and J. R. Bend. Prediction of pulmonary benzo(a)pyren 4,5-oxide clearance: a pharmacokinetic analysis of epoxide-metabolizing enzymes in rabbit lung.J. Pharmacol. Exp. Ther. 214:478–482 (1980).

    CAS  PubMed  Google Scholar 

  34. H. Boxenbaum. Interspecies variation in liver weight, hepatic blood flow and antipyrine intrinsic clearance: extrapolation of data to benzodiazepines and phenytoin.J. Pharmacokin. Biopharm. 8:165–176 (1980).

    Article  CAS  Google Scholar 

  35. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Physiological pharmacokinetics of ethoxybenzamide based on biochemical data obtainedin vitro as well as on physiological data.J. Pharmacokin. Biopharm. 10:649–661 (1982).

    Article  CAS  Google Scholar 

  36. S. H. Curry. Relation between binding to plasma protein, apparent volume of distribution, and rate constants of disposition and elimination for chlorpromazine in three species.J. Pharm. Pharmacol. 24:818–819 (1972).

    Article  CAS  PubMed  Google Scholar 

  37. G. H. Evans. The disposition of propranolol. III: Decreased half-life and volume of distribution as a result of plasma binding in man, monkey, dog and rat.J. Pharmacol. Exp. Ther. 186:114–122 (1973).

    CAS  PubMed  Google Scholar 

  38. J. H. Lin, Y. Sugiyama, S. Awazu, and M. Hanano. Kinetic studies on the deethylation of ethoxybenzamide.Biochem. Pharmacol. 29:2825–2830 (1980).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant-in-aid for scientific research provided by the Ministry of Education, Science and Culture of Japan. A portion of the paper appeared in a dissertation submitted by Y. Igari to the Graduate Division, University of Tokyo, in partial fulfillment of the requirement for the Ph.D. degree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Igari, Y., Sugiyama, Y., Sawada, Y. et al. Prediction of diazepam disposition in the rat and man by a physiologically based pharmacokinetic model. Journal of Pharmacokinetics and Biopharmaceutics 11, 577–593 (1983). https://doi.org/10.1007/BF01059058

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059058

Key words

Navigation