Skip to main content
Log in

Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[methyl-11C]-nicotine in the brains of Rhesus monkey an attempt to study nicotinic receptors in vivo

  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

N-[methyl-11C] nicotine (11C-nicotine) was given intravenously to monkeys and the uptake and regional distribution of radioactivity was followed in the brain using positron emission tomography (PET). The11C-radioactivity in the brain peaked within 1–2 min and then rapidly declined. Pretreatment with unlabelled nicotine (10 μg/kg) reduced the uptake of11C-radioactivity to the brain by 30%. The uptake of radioactivity was higher following (+)11C-nicotine than (−)11C-nicotine. Both enantiomers were distributed in a similar manner within the brain. When animals were infused with a peripheral nicotinic blocker (trimetaphan) the uptake of radioactivity to the brain was lower following (+)11C-nicotine compared to (−)11C-nicotine. The amount of radioactivity was high in the occipital cortex, thalamus, intermediate in the frontal cortex and low in white matter in (−)11C injected monkeys while no regional difference in distribution of11C-radioactivity was observed after injection of (+)11C-nicotine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem A (1987) Characterization of muscarinic and nicotinic receptors in neural and nonneural tissue: changes in Alzheimer's disease. Acta Univ Upsal 32: 4–61

    Google Scholar 

  • Adem A, Nordberg A (1988) Nicotinic cholinergic receptor heterogeneity in mammalian brain. In: Rand MJ, Thurau K (eds) The pharmacology of nicotine. IRL Press, Oxford, pp 227–248

    Google Scholar 

  • Adem A, Synnergren B, Botros M, Öhman B, Winblad B, Nordberg A (1987)3H-acetylcholine nicotinic recognition sites in human brain: characterization of agonist binding. Neurosci Lett 83: 298–302

    Google Scholar 

  • Adem A, Gillberg PG, Singh Jossan S, Sara V, Nordberg A (1988a) Quantitative autoradiography of nicotinic receptors in large cryosections of human brain hemispheres. Neurosci Lett, in press

  • Adem A, Singh Jossan S, d'Argy R, Brandt I, Winblad B, Nordberg A (1988b) Distribution of nicotinic receptors in human thalamus as visualized by3H-nicotine and3H-acetylcholine receptor autoradiography. J Neural Transm 73: 77–83

    Google Scholar 

  • Appelgren LE, Hansson E, Schmiterlöw CG (1962) The accumulation and metabolism of C14-labelled nicotine in brain of mice and cats. Acta Physiol Scand 56: 249–257

    Google Scholar 

  • Benwell MEM, Balfour DJK, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)3H-nicotine binding sites in human brain. J Neurochem 50: 1243–1247

    Google Scholar 

  • Clarke PBS, Pert C, Pert A (1984) Autoradiographic distribution of nicotine receptors in rat brain. Brain Res 323: 390–395

    Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert C, Pert A (1985) Nicotine binding in rat brain: autoradiographical comparison of (3H)-acetylcholine, (3H)-nicotine and125I-alpha-bungarotoxin. J Neurosci 5: 1307–1315

    Google Scholar 

  • Eriksson L, Bohm C, Kesselberg M, Blomquist G, Litton J, Widén L, Bergström M, Eriksson K, Greitz T (1982) A form ring positron camera for emission tomography of the brain. IEEE Trans Nuclear Sci 29: 539–543

    Google Scholar 

  • Greitz T, Ingvar DH, Widén L (eds) (1985) The metabolism of the human brain studied with Positron Emission Tomography. Raven Press, New York

    Google Scholar 

  • Hayaishi O, Torizuka K (eds) (1986) Biomedical imaging Academic Press, New York

    Google Scholar 

  • Hartvig P, Eckernäs S-Å, Ekblom B, Lindström L, Lundqvist H, Axelsson S, Fasth KJ, Gullberg P, Långström B (1988) Receptor binding and selectivity of three11C-labelled dopamine receptor antagonists in the brain of Rhesus monkey studies with positron emission tomography (PET). Acta Neurol Scand 77: 314–321

    Google Scholar 

  • Härfstrand A, Adem A, Fuxe K, Agnati L, Andersson K, Nordberg A (1988) Topographical distribution of nicotinic receptors in the rat tel-and diencephalon-quantitative receptor autoradiography using3H-acetylcholine,125I-α-bungarotoxin and3H-nicotine. Acta Physiol Scand 132: 1–14

    Google Scholar 

  • Jacob P (1982) Resolution of (+)-5-bromonornicotine. Synthesis of (R)-and (S)-nornicotine of high enantiomeric purity. Org Chem 47: 4165–4167

    Google Scholar 

  • Larsson C (1985) Nicotinic receptors in the central nervous system: methodological and functional aspects. Acta Univ Upsal 104: 4–45

    Google Scholar 

  • Larsson C, Nordberg A (1985) Comparative analysis of nicotine-like receptor ligand interactions in rodent brain homogenate. J Neurochem 45: 24–31

    Google Scholar 

  • Larsson C, Lundberg P-Å, Halén A, Adem A, Nordberg A (1987) In vitro binding of3H-acetylcholine to nicotinic receptors in rodent and human brain. J Neural Transm 69: 3–18

    Google Scholar 

  • Larsson C, Nilsson L, Halén A, Nordberg A (1986) Subchronic treatment of rats with nicotine: effects on tolerance and on3H-acetylcholine and3H-nicotine binding in the rat. Alcohol Drug Depend 17: 37–45

    Google Scholar 

  • London ED, Waller SB, Wamsley JK (1984) Autoradiographic localization of (3H)-nicotine binding sites in the rat brain. Neurosci Lett 53: 179–184

    Google Scholar 

  • Långström B, Antoni G, Halldin C, Svärd H, Bergson G (1982) The synthesis of some11C-labelled alkaloids. Chemica Scripta 20: 46–48

    Google Scholar 

  • Långström B, Halldin C, Antoni G, Gullberg P, Malmborg P, Någren K, Rimland A, Svärd H (1987) Synthesis of11C-L and D-methionine. J Nucl Med 28: 1037–1040

    Google Scholar 

  • Långström B, Lundkvist H (1979) A flow radioliquid chromatography detector. Radiochem Radioanal Lett 41: 375

    Google Scholar 

  • Mangan GL, Golding JF (1984) The psychopharmacology of smoking. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Martin BR, Tripathi HL, Aceto MD, May EL (1983) Relationship of the biodisposition of the stereoisomers of nicotine in the central nervous system to their pharmacological actions. J Pharmacol Exp Ther 226: 157–163

    Google Scholar 

  • Maziere M, Berger G, Masse R, Phimmer D, Comar D (1979) The “in vivo” distribution of carbon-11 labelled (−)nicotine in animals a method suitable for use in man. In: Remond A, Izard C (eds) Electrophysiological effects of nicotine. Elsevier/North Holland Biomedical Press, Amsterdam, pp 31–47

    Google Scholar 

  • Nordberg A, Winblad B (1986) Reduced number of (3H) nicotine and (3H) acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett 72: 115–119

    Google Scholar 

  • Nordberg A, Adem A, Hardy J, Winblad B (1988a) Change in nicotonic receptor subtypes in temporal cortex of Alzheimer brains. Neurosci Lett 86: 317–321

    Google Scholar 

  • Nordberg A, Adem A, Nilsson L, Romanelli L, Zhang X (1988b) Heterogenous cholinergic nicotinic receptors in the CNS. In: Clementi F et al (eds) Nicotinic acetylcholine receptors in the nervous system. Springer, Berlin Heidelberg New York Tokyo, pp 331–350

    Google Scholar 

  • Nordberg A, Adem A, Nilsson L, Winblad B (1988c) Nicotinic and muscarinic cholinergic receptor heterogeneity in human brain at normal aging and dementia of Alzheimer type. In: Pepeu G et al (eds) New trends in aging. Fidia Research Series, vol 15. Liviana Press, Padova, pp 27–36

    Google Scholar 

  • Phelps M, Mazziotta I, Schelbert H (eds) (1986) Positron emission tomography and autoradiograph. Raven Press, New York

    Google Scholar 

  • Romanelli L, Öhman B, Adem A, Nordberg A (1988) Subchronic treatment of rats with nicotine: interconversion of nicotinic receptor subtypes in brain. Eur J Pharmacol 148: 289–291

    Google Scholar 

  • Schwartz RD (1986) Autoradiographic distribution of high affinity muscarinic and nicotinic cholinergic receptors labelled with (3H)-acetylcholine in rat brain. Life Sci 38: 2111–2119

    Google Scholar 

  • Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in brain: in vivo regulation. Science 220: 214–216

    Google Scholar 

  • Stålhandske T (1970) Effects of increased liver metabolism of nicotine on its uptake, elimination and toxicity in mice. Acta Physiol Scand 80: 222–234

    Google Scholar 

  • Whitehouse PJ, Martino AM, Antuono PG, Lowenstein PR, Coyle RT, Price DL, Kellar KJ (1986) Nicotinic acetylcholine binding sites in Alzheimer's disease. Brain Res 371: 146–151

    Google Scholar 

  • Wonnacott S (1987) Brain nicotine binding sites. Human Toxicol 6: 343–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nordberg, A., Hartvig, P., Lundqvist, H. et al. Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[methyl-11C]-nicotine in the brains of Rhesus monkey an attempt to study nicotinic receptors in vivo. J Neural Transm Gen Sect 1, 195–205 (1989). https://doi.org/10.1007/BF02248669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02248669

Keywords

Navigation