Skip to main content
Log in

Reversible binding of tolmetin, zomepirac, and their glucuronide conjugates to human serum albumin and plasma

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Acyl glucuronides of drugs and bilirubin have been shown in the past decade to be reactive metabolites undergoing acyl migration and irreversible binding. The latter reaction has been hypothesized to be facilitated by or to proceed through the formation of a reversible complex. Furthermore, it has been suggested that the decreased binding seen in patients with compromised excretory function may be due to competition by elevated plasma concentrations of the glucuronides. In these reversible binding studies, we characterized the extent and the “site” of binding of tolmetin, zomepirac, their glucuronides and isomeric conjugates. We also examined the displacement between the parent drugs and their glucuronide conjugates using a rapid ultrafiltration method. Tolmetin exhibited three classes of binding sites with a primary association constant of 1.7×106 M−1 (Kdl=0.60 μM). The primary association constant of zomepirac (1.16×106 M−1, Kdl=0.86 μM) is similar to that of tolmetin. The β 1 and α/β3 glucuronides of both compounds bind to a lesser extent than their parent aglycones. The isomeric glucuronide conjugates of both compounds showed much stronger binding than the β/1 conjugates. Of the four glucuronides investigated, tolmetin glucuronide-α/β3 isomer was bound by fatty acid free human serum albumin with the highest affinity (4.6×105 M−1, Kd=2.22 μM). Protein binding of the parent drugs and conjugates were decreased significantly at pH 5.0. In displacement studies, except for salicylate and acetylsalicylate, drugs known to bind to Sites I and II as well as the digitoxin and tamoxifen binding sites had little inhibitory effect on the binding of tolmetin, zomepirac, and their glucuronide conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. H. Lin, D. M. Cocchetto, and D. E. Duggan. Protein binding as a primary determinant of the clinical pharmacokinetic properties of non-steroidal anti-inflammatory drugs.Clin. Pharmacokin. 12:402–432 (1987).

    Article  CAS  Google Scholar 

  2. G. B. Wong and E. M. Sellers. Intravascular factors affecting diazepam binding to human serum albumin.Biochem. Pharmacol. 28:3265–3270 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. P. H. Hinderling, J. Bres, and E. R. Garrett. Protein binding and erythrocyte partitioning of disopyramide and its monodealkylated metabolite.J. Pharm. Sci. 63: 1684–1689 (1974).

    Article  CAS  PubMed  Google Scholar 

  4. H. Spahn-Langguth and L. Z. Benet. Acyl glucuronides revisited: Is the glucuronidation process a toxification as well as a detoxification mechanism?Drug Metab. Rev. 24:5–48 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. H. W. Ruelius, S. K. Kirkham, E. M. Young, and F. W. Janssen. Reactions of oxaprozin-1-O-acyl glucuronide in solutions of human plasma and albumin.Adv. Exp. Med. Biol. 197:431–444 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. G. Sudlow, D. J. Birkett and D. N. Wade. Further characterization of specific drug binding sites on human serum albumin.Mol. Pharmacol. 12:1052–1061 (1976).

    CAS  PubMed  Google Scholar 

  7. D. S. Wells, F. W. Janssen, and H. W. Ruelius. Interactions between oxaprozin glucuronide and albumin.Xenobiotica 17:1437–1449 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. F. D. Boudinot, C. A. Homon, W. J. Jusko, and H. W. Ruelius. Protein binding of oxazepam and its glucuronide conjugates to human serum albumin.Biochem. Pharmacol. 34: 2115–2121 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. P. J. Hayball, R. L. Nation, and F. Bochner. Steroselective interactions of ketoprofen glucuronides with human plasma protein and serum albumin.Biochem. Pharmacol. 44:291–299 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. S. Iwakawa, H. Spahn, L. Z. Benet, and E. T. Lin. Stereoselective binding of the glucuronide conjugates of carprofen enantiomers to human serum albumin.Biochem. Pharmacol. 39:949–953 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. A. Rubin, P. Warrick, R. L. Wolen, S. M. Chernish, A. S. Ridolfo, and C. M. Gruber. Physiological disposition of fenoprofen in man. III. Metabolism and protein binding of fenoprofen.J. Pharmacol. Exp. Ther. 183:449–457 (1972).

    CAS  PubMed  Google Scholar 

  12. K. J. Fehske, W. E. Müller, and U. Woller. The location of drug binding sites in human serum albumin.Biochem. Pharmacol. 30:687–692 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. U. Busch, M. Molzahn, G. Bozler, and F. W. Koss. Pharmacokinetics of oxazepam following multiple administration in volunteers and patients with chronic renal disease.Arzneim. Forsch. 31:1507 (1981).

    CAS  Google Scholar 

  14. T. G. Murray, S. T. Chiang, H. H. Koepke, and B. R. Walker. Antipyrine and warfarin disposition in a patient with idiopathic hypoalbuminemia.Clin. Pharmacol. Ther. 30:805–816 (1981).

    Article  CAS  PubMed  Google Scholar 

  15. W. A. Cressman, G. F. Wortham, and J. Plostnieks. Absorption and excretion of tolmetin in man.Clin. Pharmacol. Ther. 19:224–233 (1976).

    CAS  PubMed  Google Scholar 

  16. J. M. Grindel, B. H. Migdalof, and J. Plostnieks Absorption and excretion of tolmetin in arthritic patients.Clin. Pharmacol. Ther. 26:122–128 (1979).

    CAS  PubMed  Google Scholar 

  17. E. C. Huskisson, H. Berry, J. Scott, and W. H. Balme. Tolectin for rheumatoid arthritis.Rheumatol. Rehabil. 13:132–134 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. M. L. Selley, J. Glass, E. J. Triggs, and J. Thomas. Pharmacokinetic studies of tolmetin in man.Clin. Pharmacol. Ther. 17:599–605 (1975).

    CAS  PubMed  Google Scholar 

  19. A. Munafo, A. F. McDonagh, P. C. Smith, and L. Z. Benet. Irreversible binding of tolmetin glucuronic acid esters to albumin in vitro.Pharm. Res. 7:21–27 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. P. J. O'Neill. Plasma protein binding of zomepirac sodium.J Pharm. Sci. 70:818–819 (1981).

    Article  PubMed  Google Scholar 

  21. P. C. Smith, A. F. McDonagh, and L. Z. Benet. Irreversible binding of zomepirac to plasma protein in vitro and in vivo.J. Clin. Invest. 77:934–939 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. P. C. Smith and L. Z. Benet Characterization of the isomeric esters of zomepirac glucuronide by proton NMR.Drug Metab. Dispos. 14:503–505 (1986).

    CAS  PubMed  Google Scholar 

  23. P. C. Smith, J. Hasegawa, and L. Z. Benet. Stability of acylglucuronides in blood, plasma and urine. Studies with zomepirac.Drug Metab. Dispos. 13:110–112 (1985).

    CAS  PubMed  Google Scholar 

  24. M. L. Hyneck, P. C. Smith, A. Munafo, A. F. McDonagh, and L. Z. Benet. Disposition and irreversible plasma protein binding of tolmetin in humans.Clin. Pharmacol. Ther. 44:107–114 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. P. C. Smith, P. N. J. Langendijk, J. A. Bosso, and L. Z. Benet. Effect of probenecid on the formation and elimination of acyl glucuronides.Clin. Pharmacol. Ther. 38:121–127 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. A. Goldstein. The interactions of drugs and plasma proteins.Pharmacol. Rev. 1:102–165 (1949).

    Google Scholar 

  27. D. D. Summer, P. G. Dayton, S. A. Cucinell, and J. Plostnieks, Metabolism of tolmetin in rat, monkey, and man.Drug Metab. Dispos. 3:283–286 (1975).

    Google Scholar 

  28. S. Keresztes-Nagy, R. F. Mais, Y. T. Oester, and J. F. Zarolinsky. Protein binding methodology: Comparison of equilibrium dialysis and frontal analysis chromatography in the study of salicylate binding.Anal. Biochem. 48:80–89 (1972).

    Article  CAS  PubMed  Google Scholar 

  29. R. W. Mason and E. G. McQueen. Protein binding of indomethacin: Binding of indomethacin to human plasma albumin and its displacement from binding by ibuprofen, phenylbutazone and salicylate in vitro.Pharmacology 12:12–19 (1974).

    Article  CAS  PubMed  Google Scholar 

  30. R. F. W. Mills, S. S. Adams, E. E. Cliffe, W. Dickinson, and J. S. Nicholson. The metabolism of ibuporofen.Xenobiotica 3:589–598 (1973).

    Article  CAS  PubMed  Google Scholar 

  31. I. Sjöholm. The specificity of drug binding sites on human serum albumin. In M. M. Reidenberg and S. Erill (eds.),Drug-Protein Binding, Praeger, New York, 1986, pp. 36–45.

    Google Scholar 

  32. D. J. Burkett and S. Wanwimalruk. Albumin as a specific binding protein for drugs and endogenous compounds. In J.-P. Tillement and E. Lindenlaub (eds.),Protein Binding and Drug Transport, Symposia Medica Hoechst, Schattauer Verlag, New York, 1985, pp. 1–47.

    Google Scholar 

  33. R. G. Dickinson and A. R. King. Interaction of diflunisal acyl glucuronide and its isomers with human serum albumin in vitro.Biochem. Pharmacol. 42:2301–2306 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by Grant GM 36633 from the National Institute of General Medical Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ojingwa, J.C., Spahn-Langguth, H. & Benet, L.Z. Reversible binding of tolmetin, zomepirac, and their glucuronide conjugates to human serum albumin and plasma. Journal of Pharmacokinetics and Biopharmaceutics 22, 19–40 (1994). https://doi.org/10.1007/BF02353408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353408

Key Words

Navigation