Skip to main content
Log in

The relationship between receptor-effector unit heterogeneity and the shape of the concentration-effect profile: Pharmacodynamic implications

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The apparent concentration-effect relationship is the ensemble of many effector units (such as individual cells or channels) that do not always exhibit a uniform stimulus-effect relationship. This concept is substantiated by many observations of heterogeneity in receptor-effector populations including hormone secreting cells, response to hormonal stimuli, activity pattern of second messengers, stimulus-evoked synaptic currents, and single ion channels. The relationship between drug concentration and magnitude of pharmacologic response is commonly described by the sigmoidalE max model which was derived from the Hill equation. The sigmoidicity factor (N) in this model is assumed to be a pure mathematical parameter without physiological connotations. This work demonstrates that the numerical value ofN (measured empirically) is the product of two factors: (i) the degree of heterogeneity of the effector subunits, i.e., the elemental component that upon drug stimulus contributes its pharmacological effect independently and does not interact with other subunits (it could range from a single receptor up to a whole tissue), and (ii) value ofN *—the shape factor of the subunits' concentration-effect relationship. A special case of this approach occurs whenN *>5, which is an on-off case. HereN is determined by the distribution (density equation) of the subunit values. In case of heterogeneity of the microparameters of the effector subunits the apparentN will always have a lower value thanN *. According to this theory it can be concluded that without knowledge of the distribution of the microparameters no mechanistic interpretation can be deduced from the apparentN value. If in the futureN * can be determined by theoretical or experimental methods, the distribution function relatingN * toN can be calculated. The relevance of this theory is increased in view of the progress being made in advanced research techniques which may enable us to determine the concentration-effect relationship at the level of the individual effector unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. J. Ariens, A. M. Simonis and J. M. van Rossum. The relation between stimulus and effect. In E. J. Ariens (ed.),Molecular Pharmacology: The Mode of Action of Biologically Active Compounds, Vol. 1 Academic Press, New York, 1964, pp. 394–466.

    Google Scholar 

  2. J. M. van Rossum and J. P. T. Burgers. Quantitative relationships between dynamics and kinetics of drugs: A system dynamics approach.Drug Metab. Rev. 15:365–382 (1984).

    Article  PubMed  Google Scholar 

  3. A. V. Hill. The possible effects of the aggregation of the molecules of haemoglobin on the dissociation curves.J. Physiol. 40:iv-vii (1910).

    Google Scholar 

  4. J. C. Kermode. The curvilinear scatchard plot: Experimental artifact or receptor heterogeneity?:Biochem. Pharmacol. 38:2053–2060 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. A. Levitzki (ed.).Receptors: A Quantitative Approach, Benjamin/Cummings Publishing, Menlo Park, CA, 1984.

    Google Scholar 

  6. A. Levitzki (ed.).Quantitative Aspects of Allosteric Mechanisms, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  7. J. G. Wagner, Kinetics of pharmacologic response I. Proposed relationship between response and concentration in the intact animal and man.J. Theoret. Biol. 20:173–201 (1968).

    Article  CAS  Google Scholar 

  8. J. H. Gaddum. The quantitative effects of antagonistic drugs.J. Physiol. 89:7P (1937).

    Google Scholar 

  9. E. J. Ariens, A. J. Beld, J. F. Rodrigues de Miranda, and A. M. Simonis. In R. D. O'Brien (ed.).The Receptors: A Comprehensive Treatise, Plenum Press, New York, 1979, pp. 33–92.

    Google Scholar 

  10. H. Courant.Calculus, 1984, p. 254.

  11. R. C. Weast and S. M. Selby. InHandbook of Mathematical Tables, 2nd ed., Chemical Rubber Company, 1964, p. 272.

  12. L. K. Paalzow. Integrated pharmacokinetic-dynamic modelling of drugs acting on the CNS.Drug Metab. Rev. 15:383–400 (1984).

    Article  PubMed  Google Scholar 

  13. D. R. Burt and G. L. Kamatchi. GABAa receptor subtypes: from pharmacology to molecular biology.FASEB J. 5:2916–2923 (1991).

    CAS  PubMed  Google Scholar 

  14. J. A. Bevan, R. D. Bevan, and S. M. Shreeve. Variable receptor affinity hypothesis.FASEB J. 3:1696–1704 (1989).

    CAS  PubMed  Google Scholar 

  15. F. Boege, E. Neumann, and E. J. M. Helmreich. Structural heterogeneity of membrane receptors and GTP-binding proteins and its functional consequences for signal transduction.Eur. J. Biochem. 199:1–15 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. L. A. Fitzpatrick. Heterogeneous secretory response of parathyroid cells.Recent Prog. Horm. Res. 48:471–475 (1993).

    CAS  PubMed  Google Scholar 

  17. D. G. Pipeleers. Heterogeneity in pancreatic beta-cell population.Diabetes 41:777–781 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. D. Bosco, M. Chanson, R. Bruzzone, and P. Meda. Visualization of amylase secretion from individual pancreatic acini.Am. J. Physiol. 254:G664-G670 (1988).

    CAS  PubMed  Google Scholar 

  19. D. A. Leong and M. O. Thorner. A potential code of luteinizing hormone-releasing hormone-induced calcium responses in the regulation of luteinizing hormone secretion among individual gonadotrophs.J. Biol. Chem. 266:9016–9020 (1991).

    CAS  PubMed  Google Scholar 

  20. M. E. Kendall and W. C. Hymer. Cell blotting: a new approach to quantify hormone secretion from individual rat pituitary cells.Endocrinology 121:2260–2262 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. P. M. Dobado-Berrios, A. Ruiz-Navarro, R. Torronteras, and F. Gracia-Navarro. Application of an optimized immunostaining technique to evaluate the heterogeneous secretory response from porcine somatotrophs by cell blotting.J. Histochem. Cytochem. 40:1715–1724 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. W. A. Kachadorian, J. Muller, and V. A. DiScala. Variability of cellular responsiveness to ADH stimulation in toad urinary bladder.Am. J. Physiol. 256:F590-F595 (1989).

    CAS  PubMed  Google Scholar 

  23. A. Oda, J. F. Daley, C. Cabral, J. Kang, M. Smith, and E. W. Salzman. Heterogeneity in filamentous actin content among individual human blood platelets.Blood 79:920–927 (1992).

    CAS  PubMed  Google Scholar 

  24. F. A. Gonzalez, D. J. Gross, L. A. Heppel, and W. W. Webb. Studies on the increase in cytosolic free calcium induced by epidermal growth factor, serum, and nucleotides in individual A431 cells.J. cell Physiol. 135:269–276 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. P. H. G. M. Willems, S. E. Van Emst-De Vries, C. H. Van Os, and J. J. H. H. M. De Pont. Dose-dependent recruitment of pancreatic acinar cells during receptor-mediated calcium mobilization.Cell Calcium 14:145–159 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. S. Muallem, S. J. Pandol, and T. G. Beeker. Hormone-evoked calcium release from intracellular stores is a quantal process.J. Biol. Chem. 264:205–212 (1989).

    CAS  PubMed  Google Scholar 

  27. L. Parker and I. Ivorra. Localized all-or-none calcium liberation by inositol triphosphate.Science 250:977–979 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. K. A. Oldershaw, D. L. Nunn, and C. W. Taylor. Quantal Ca2+ mobilization stimulated by inositol 1,4,5-triphosphate in permeabilized hepatocytes.Biochem. J. 278:705–708 (1991).

    CAS  PubMed Central  PubMed  Google Scholar 

  29. J. M. Bekkers, G. B. Richerson and C. F. Stevens. Origin of variability in the quantal size in cultured hippocampal neurons and hippocampal slices.Proc. Natl. Acad. Sci. U.S. 87:5359 (1990).

    Article  CAS  Google Scholar 

  30. K. P. Scholz and R. J. Millet. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-like adenosine receptor at hippocampal synapses.Neuron 8:1139–1150 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. A. Malgaroli and R. W. Tsien. Glutamate-induced long-term potentiation of the frequency of miniature synaptic currents in cultured hippocampal neurons.Nature 357:134–139 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. C. R. Lupica W. R. Proctor, and T. V. Dunwiddie. Presystemic inhibition of excitatory synaptic transmission by adenosine in rat hippocampus: Analysis of unitary EPSP variance measured by whole-cell recording.J. Neurosci. 12:3753–3764 (1992).

    CAS  PubMed  Google Scholar 

  33. C. Newland, D. Colquhoun, and S. G. Cull-Candy. Single channels activated by high concentrations of GABA in superior cervical ganglion neurons of the rat.J. Physiol. 432:203–233 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. R. Scheneggenburger and A. Konnerth. GABA-mediated synaptic transmission in neuroendocrine cells: a patch-clamp study in a pituitary slice preparation.Pfluegers Arch. 421:364–373 (1992).

    Article  Google Scholar 

  35. J. Horta, M. Hiriart, and G. Cota. Differential expression of Na channels in functional subpopulations of rat lactopores.Am. J. Physiol. 261:C865-C871 (1991).

    CAS  PubMed  Google Scholar 

  36. P. A. Shelton, N. W. Davies, M. Antoniou, F. Grosveld, M. Needham, M. Hollis, W. J. Brammar, and E. C. Conley. Regulated expression of K+ channel genes in electrically silent mammalian cells by linkage to beta-globin gene-activation elements.Recept. Channel 1:25–37 (1993).

    CAS  Google Scholar 

  37. M. K. Taylor and J. J. Cohen. Cell-mediated cytotoxicity.Curr. Opin. Immunol. 4:338–343 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Lowman, P. H. Rees, R. C. Benyon, and M. K. Church. Human mast cell heterogeneity: Histamine release from mast cells dispersed from, skin, lung, adenoids, tonsils, and colon in response to IgE-dependent and nonimmunologic stimuli.J. Allergy Clin. Immunol. 81:590–797 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. R. A. Wilson and J. R. Hart. In vivo drug metabolism and liver lobule heterogeneity in the rat.Gastroenterology 81:563–569 (1981).

    Google Scholar 

  40. L. M. Berstein. Topoendocrinology.J. Endocrinol. 137:163–166 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. M. E. Ausems, C. C. Hug, D. R. Stanski, and A. G. L. Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery.Anesthesiology 65:362–373 (1986).

    Article  CAS  PubMed  Google Scholar 

  42. A. S. Nies. Principles of therapeutics. In A. Goodman Gilman, L. S. Goodman, T. W. Rall, and F. Murad (eds.),Goodman and Gilman's The Pharmacological Basis of Therapeutics, 7th ed., MacMillan, New York, 1985, pp. 62–83.

    Google Scholar 

  43. S. T. Gross, A. Hoffman, M. Donbrow, and S. Benita. Fundamentals of the release mechanism interpretation in multiparticulate systems: the prediction of the commonly observed release equations from statistical population models for particle ensembles.Int. J. Pharm. 29:213–222 (1986).

    Article  CAS  Google Scholar 

  44. A. Hoffman, M. Donbrow, S. T. Gross, S. Benita, and R. Bahat. Fundamentals of release mechanism interpretation in multiparticulate systems: Determination of substrate release from single microcapsules and relation between individual and ensemble release kinetics.Int. J. Pharm. 29:195–211 (1986).

    Article  CAS  Google Scholar 

  45. M. Danhof, J. W. Mandema, and A. M. Stijnen. In C. J. van Boxtel, N. H. G. Holford and M. Danhof (eds.),The In Vivo Study of Drug Action, Elsevier, Amsterdam, 1992, pp. 29–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, A., Goldberg, A. The relationship between receptor-effector unit heterogeneity and the shape of the concentration-effect profile: Pharmacodynamic implications. Journal of Pharmacokinetics and Biopharmaceutics 22, 449–468 (1994). https://doi.org/10.1007/BF02353789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353789

Key Words

Navigation