Skip to main content

Advertisement

Log in

Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cytochrome P450 enzymes (P450s) are important targets in cancer, due to their role in xenobiotic metabolism. Since P450s are the “bridges” between the environment and our body, their function can be linked in many ways to carcinogenesis: they activate dietary and environmental components to ultimate carcinogens (i), the cancer tissue maintains its drug resistance with altered expression of P450s (ii), P450s metabolize (sometimes activate) drugs used for cancer treatment (iii) and they are potential targets for anticancer therapy (iiii). These highly polymorphic enzymes are regulated at multiple molecular levels. Regulation is as important as genetic difference in the existing individual variability in P450 activity. In this review, examples of the transcriptional (DNA methylation, histone modification, modulation by xenosensors) and post-transcriptional (miRNA) regulation will be presented and thereby introduce potential molecular targets at which the metabolism of anticancer drugs, the elimination of cancerogenes or the progress of carcinogenesis could be affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADPF:

AHR degradation promoting factor

AHR:

Aromatic hydrocarbon receptor

AHRR:

Aromatic hydrocarbon receptor repressor

ARNT:

Aromatic hydrocarbon receptor nuclear translocator

ARE:

Antioxidant response element

ASC2:

Activating signal cointegrator 2

B[a]P:

Benzo[a]pyrene

CAR:

Constitutive androstane receptor

CREBBP:

CREB-binding protein

DNMT:

DNA methyltransferase

ER:

Estrogen receptor

FOXO:

Forkhead box O

GR:

Glucocorticoid receptor

GRIP1:

Glucocorticoid receptor interacting protein 1

HDAC1:

Histone deacetylase-1

HIF-1:

Hypoxia induced factor

HNF-4α:

Hepatocyte nuclear factor

KEAP-1:

Kelch-like ECH-associated protein 1

3-MC:

3-Methylcholantrene

NcoR:

Nuclear receptor corepressor

NF-κb:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NRF2:

NF-E2-related factor 2

PRMT1:

Arginine methyltransferase 1

PXR:

Pregnane X receptor

RXR:

Retinoid X receptor

SMC-1:

Structural maintenance of chromosomes 1-like 1

SRC-1:

Steroid receptor coactivator-1

SMRT:

Silencing mediator for retinoid and thyroid receptor

TUF2:

Transcriptional intermediary factor 2

VDR:

Vitamin D receptor

XAP2:

Immunophillin like X protein XAP2

XAR:

Xenobiotic activated receptors

References

  1. Waxman DJ, Azaroff L (1992) Phenobarbital induction of P-450 gene expression. Biochem J 281:577–592

    PubMed  CAS  Google Scholar 

  2. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Estabrook RW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    PubMed  CAS  Google Scholar 

  3. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691

    Google Scholar 

  4. McFadyen MC, Cruickshank ME, Miller ID, McLeod HL, Melvin WT, Haites NE, Parkin D, Murray GI (2001) Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer. Br J Cancer85(2):242–246

    Google Scholar 

  5. McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI (2001) Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62(2):207–212

    Google Scholar 

  6. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526

    PubMed  CAS  Google Scholar 

  7. Rodriguez-Antona C, Gomez A, Karlgren M, Sim SC, Ingelman-Sundberg M (2010) Molecular genetics and epigenetics of the cytochrome P450 gene family and its relevance for cancer risk and treatment. Hum Genet 127(1):1–17

    PubMed  CAS  Google Scholar 

  8. Handschin C, Meyer UA (2003) Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 55(4):649–673

    PubMed  CAS  Google Scholar 

  9. Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32

    PubMed  CAS  Google Scholar 

  10. Lim YP, Huang JD (2008) Interplay of pregnane X receptor with other nuclear receptors on gene regulation. Drug Metab Pharmacokinet 23(1):14–21

    PubMed  CAS  Google Scholar 

  11. Takai D, Jones PA (2003) The CpG island searcher: a new WWW resource. In Silico Biol 3(3):235–240

    PubMed  CAS  Google Scholar 

  12. Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    PubMed  CAS  Google Scholar 

  13. Rountree MR, Bachman KE, Herman JG, Baylin SB (2001) DNA methylation, chromatin inheritance and cancer. Oncogene 20:3156–3165

    PubMed  CAS  Google Scholar 

  14. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466

    PubMed  CAS  Google Scholar 

  15. De Smet C, Lurquin C, Lethe B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11):7327–7335

    Google Scholar 

  16. Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci USA 79:3418–3422

    PubMed  CAS  Google Scholar 

  17. Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE (2002) Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 31:175–179

    PubMed  CAS  Google Scholar 

  18. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T, Nagase H, Held WA (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 102:3336–3341

    PubMed  CAS  Google Scholar 

  19. Okino ST, Pookot D, Li LC, Zhao H, Urakami S, Shiina H, Dahiya R (2006) Epigenetic inactivation of the dioxin-responsive cytochrome P4501A1 gene in human prostate cancer. Cancer Res 66:7420–7428

    PubMed  CAS  Google Scholar 

  20. Anttila S, Hakkola J, Tuominen P, Elovaara E, Husgafvel-Pursiainen K, Karjalainen A, Hirvonen A, Nurminen T (2003) Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking. Cancer Res 63:8623–8628

    PubMed  CAS  Google Scholar 

  21. Kellermann G, Shaw CR, Luyten-Kellermann M (1973) Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N Engl J Med 289:934–937

    PubMed  CAS  Google Scholar 

  22. Stücker I, Jacquet M, de Waziers I, Cénée S, Beaune P, Kremers P, Hémon D (2000) Relation between inducibility of CYP1A1, GSTM1 and lung cancer in a French population. Pharmacogenetics 10:617–627

    PubMed  Google Scholar 

  23. Murray GI, Taylor MC, McFadyen MCMcKay JA, Greenlee WF, Burke MD, Melvin WT (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031

    PubMed  CAS  Google Scholar 

  24. McFadyen MC, Breeman S, Payne S, Stirk C, Miller ID, Melvin WT, Murray GI (1999) Immunohistochemical localization of cytochrome P450 CYP1B1 in breast cancer with monoclonal antibodies specific for CYP1B1. J Histochem Cytochem 47:1457–1464

    PubMed  CAS  Google Scholar 

  25. Tokizane T, Shiina H, Igawa M, Enokida H, Urakami S, Kawakami T, Ogishima T, Okino ST, Li LC, Tanaka Y, Nonomura N, Okuyama A, Dahiya R (2005) Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801

    PubMed  CAS  Google Scholar 

  26. Habano W, Gamo T, Sugai T, Otsuka K, Wakabayashi G, Ozawa S (2009) CYP1B1, but not CYP1A1, is downregulated by promoter methylation in colorectal cancers. Int J Oncol 34(4):1085–1091

    PubMed  CAS  Google Scholar 

  27. Vieira I, Pasanen M, Raunio H, Cresteil T (1998) Expression of CYP2E1 in human lung and kidney during development and in full-term placenta: a differential methylation of the gene is involved in the regulation process. Pharmacol Toxicol 83(5):183–187

    PubMed  CAS  Google Scholar 

  28. Vieira I, Sonnier M, Cresteil T (1996) Developmental expression of CYP2E1 in the human liver. Hypermethylation control of gene expression during the neonatal period. Eur J Biochem 238(2):476–483

    PubMed  CAS  Google Scholar 

  29. Botto F, Seree E, el Khyari S, de Sousa G, Massacrier A, Placidi M, Cau P, Pellet W, Rahmani R, Barra Y (1994) Tissue-specific expression and methylation of the human CYP2E1 gene. Biochem Pharmacol 48(6):1095–1103

    PubMed  CAS  Google Scholar 

  30. Ghanayem BI, Hoffler U (2007) Investigation of xenobiotics metabolism, genotoxicity and carcinogenicity using cyp2e1( −/−) mice. Curr Drug Metab 8:728–749

    PubMed  CAS  Google Scholar 

  31. Botto F, Seree E, el Khyari S, Cau P, Henric A, De Meo M, Bergeron P, Barra Y (1994) Hypomethylation and hypoexpression of human CYP2E1 gene in lung tumors. Biochem Biophys Res Commun 205(2):1086–1092

    PubMed  CAS  Google Scholar 

  32. Li W, Tang Y, Hoshino T, Neya S (2009) Molecular modeling of human cytochrome P450 2W1 and its interactions with substrates. Mol Graph Model 28(2):170–176

    Google Scholar 

  33. Gomez A, Nekvindova J, Travica S, Lee MY, Johansson I, Edler D, Mkrtchian S, Ingelman-Sundberg M (2010) Colorectal cancer specific cytochrome P450 2W1 (CYP2W1): intracellular localization, glycosylation, and catalytic activity. Mol Pharmacol. doi: 10.1124/mol.110.067652

  34. Edler D, Stenstedt K, Ohrling K, Hallstrom M, Karlgren M, Ingelman-Sundberg M, Ragnhammar P (2009) The expression of the novel CYP2W1 enzyme is an independent prognostic factor in colorectal cancer—a pilot study. Eur J Cancer 45(4):705–712

    PubMed  CAS  Google Scholar 

  35. Karlgren M, Gomez A, Stark K, Svärd J, Rodriguez-Antona C, Oliw E, Bernal ML, Ramón y Cajal S, Johansson I, Ingelman-Sundberg M (2006) Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem Biophys Res Commun 341(2):451–458

    PubMed  CAS  Google Scholar 

  36. Karlgren M, Ingelman-Sundberg M (2007) Tumour-specific expression of CYP2W1: its potential as a drug target in cancer therapy. Expert Opin Ther Targets 11(1):61–67

    PubMed  CAS  Google Scholar 

  37. Gomez A, Karlgren M, Edler D, Bernal ML, Mkrtchian S, Ingelman-Sundberg M (2007) Expression of CYP2W1 in colon tumors: regulation by gene methylation. Pharmacogenomics 8(10):1315–1325

    PubMed  CAS  Google Scholar 

  38. Dannenberg LO, Edenberg HJ (2006) Epigenetics of gene expression in human hepatoma cells: expression profiling the response to inhibition of DNA methylation and histone deacetylation. BMC Genomics 7:181

    Google Scholar 

  39. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    PubMed  CAS  Google Scholar 

  40. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    PubMed  CAS  Google Scholar 

  41. Yoon HG, Chan DW, Reynolds AB, Qin J, Wong J (2003) N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein. Kaiso Mol Cell 12:723–734

    CAS  Google Scholar 

  42. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469

    PubMed  CAS  Google Scholar 

  43. Schnekenburger M, Peng L, Puga A (2007) HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim Biophys Acta 1769(9–10):569–578

    PubMed  CAS  Google Scholar 

  44. Xie Y, Ke S, Ouyang N, He J, Xie W, Bedford MT, Tian Y (2009) Epigenetic regulation of transcriptional activity of pregnane X receptor by protein arginine methyltransferase 1. J Biol Chem 284(14):9199–9205

    PubMed  CAS  Google Scholar 

  45. Assenat E, Gerbal-Chaloin S, Larrey D, Saric J, Fabre JM, Maurel P, Vilarem MJ, Pascussi JM (2004) Interleukin 1beta inhibits CAR-induced expression of hepatic genes involved in drug and bilirubin clearance. Hepatology 40(4):951–960

    PubMed  CAS  Google Scholar 

  46. Ma Quiang (2008) Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol 21(9):1651–1671

    PubMed  CAS  Google Scholar 

  47. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans RM (1995) The nuclear receptor superfamily: the second decade. Cell 83(6):835–839

    PubMed  CAS  Google Scholar 

  48. Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ (2006) Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126(4):789–799

    PubMed  CAS  Google Scholar 

  49. Tamási V, Vereczkey L, Falus A, Monostory K (2003) Some aspects of interindividual variations in the metabolism of xenobiotics. Inflamm Res 52(8):322–333

    PubMed  Google Scholar 

  50. Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliewer SA, Lambert MH, Moore JT (2002) Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol Endocrinol 16(5):977–986

    PubMed  CAS  Google Scholar 

  51. Goodwin B, Hodgson E, Liddle C (1999) The orphan human Pregnane X Receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 56:1329–1339

    PubMed  CAS  Google Scholar 

  52. Sueyoshi T, Negishi M (2001) Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 41:123–143

    PubMed  CAS  Google Scholar 

  53. Gerbal-Chaloin S, Pascussi JM, Pichard-Garcia L, Daujat M, Waechter F, Fabre JM, Carrere N, Maurel P (2001) Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab Dispos 29:242–251

    PubMed  CAS  Google Scholar 

  54. Leo C, Chen JD (2000) The SRC family of nuclear receptor coactivators. Gene 245:1–11

    PubMed  CAS  Google Scholar 

  55. Hörlein AJ, Näär AM, Heinzel T, Torchia J, Gloss B, Kurokawa R, Ryan A, Kamei Y, Söderström M, Glass CK (1995) Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404

    PubMed  Google Scholar 

  56. Chen JD, Evans RM (1995) A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457

    PubMed  CAS  Google Scholar 

  57. Ordentlich P, Downes M, Xie W, Genin A, Spinner NB, Evans RM (1999) Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc Natl Acad Sci USA 96:2639–2644

    PubMed  CAS  Google Scholar 

  58. Park EJ, Schroen DJ, Yang M, Li H, Li L, Chen JD (1999) SMRT, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc Natl Acad Sci USA 96:3519–3524

    PubMed  CAS  Google Scholar 

  59. Chang TK, Weber GF, Crespi CL, Waxman DJ (1993) Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res 53:5629–5637

    PubMed  CAS  Google Scholar 

  60. Chang TK, Yu L, Maurel P, Waxman DJ (1997) Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res 57:1946–1954

    PubMed  CAS  Google Scholar 

  61. Crewe HK, Ellis SW, Lennard MS, Tucker GT (1997) Variable contribution of cytochromes P450 2D6, 2C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 53:171–178

    PubMed  CAS  Google Scholar 

  62. Desai PB, Nallani SC, Sane RS, Moore LB, Goodwin BJ, Buckley DJ, Buckley AR (2002) Induction of cytochrome P450 3A4 in primary human hepatocytes and activation of the human pregnane X receptor by tamoxifen and 4-hydroxytamoxifen. Drug Metab Dispos 30:608–612

    PubMed  CAS  Google Scholar 

  63. Mani S, Huang H, Sundarababu S, Liu W, Kalpana G, Smith AB, Horwitz SB (2005) Activation of the steroid and xenobiotic receptor (human pregnane X receptor) by nontaxane microtubule stabilizing agents. Clin Cancer Res 11:6359–6369

    PubMed  CAS  Google Scholar 

  64. Synold TW, Dussault I, Forman BM (2001) The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux. Nat Med 7:584–590

    PubMed  CAS  Google Scholar 

  65. Wang H, Faucette S, Sueyoshi T, Moore R, Ferguson S, Negishi M, LeCluyse EL (2003) A novel distal enhancer module regulated by pregnane X receptor/constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression. J Biol Chem 278:14146–14152

    PubMed  CAS  Google Scholar 

  66. Sueyoshi T, Negishi M (2001) Phenobarbital response elements of cytochrome P450 genes and nuclear receptors. Annu Rev Pharmacol Toxicol 41:123–143

    PubMed  CAS  Google Scholar 

  67. Kast HR, Goodwin B, Tarr PT, Jones SA, Anisfeld AM, Stoltz CM, Tontonoz P, Kliewer S, Willson TM, Edwards PA (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277:2908–2915

    PubMed  CAS  Google Scholar 

  68. Faucette SR, Sueyoshi T, Smith CM, Negishi M, Lecluyse EL, Wang H (2006) Differential regulation of hepatic CYP2B6 and CYP3A4 genes by constitutive androstane receptor but not pregnane X receptor. J Pharmacol Exp 317(3):1200–1209

    CAS  Google Scholar 

  69. Njar VC, Gediya L, Purushottamachar P, Chopra P, Vasaitis TS, Khandelwal A, Mehta J, Huynh C, Belosay A, Patel J (2006) Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorg Med Chem 14(13):4323–4340

    Google Scholar 

  70. Kato S (2000) The function of vitamin D activation. J Biochem 127:717–722

    PubMed  CAS  Google Scholar 

  71. Wang K, Mendy AJ, Dai G, Luo HR, He L, Wan YJ (2006) Retinoids activate the RXR/SXR-mediated pathway and induce the endogenous CYP3A4 activity in Huh7 human hepatoma cells. Toxicol Sci 92:51–60

    PubMed  CAS  Google Scholar 

  72. Thummel KE, Brimer C, Yasuda K, Thottassery J, Senn T, Lin Y, Ishizuka H, Kharasch E, Schuetz J, Schuetz E (2001) Transcriptional control of intestinal cytochrome P-4503A by 1alpha, 25-dihydroxy vitamin D3. Mol Pharmacol 60:1399–1406

    PubMed  CAS  Google Scholar 

  73. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ (2002) Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277:25125–25132

    PubMed  CAS  Google Scholar 

  74. Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316

    PubMed  CAS  Google Scholar 

  75. Guyton KZ, Kensler TW, Posner GH (2001) Cancer chemoprevention using natural vitamin D and synthetic analogs. Annu Rev Pharmacol Toxicol 41:421–442

    PubMed  CAS  Google Scholar 

  76. Pascussi JM, Drocourt L, Fabre JM, Maurel P, Vilarem MJ (2000) Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol 58:361–372

    PubMed  CAS  Google Scholar 

  77. Wang H, Faucette SR, Gilbert D, Jolley SL, Sueyoshi T, Negishi M, LeCluyse EL (2003) Glucocorticoid receptor enhancement of pregnane X receptor-mediated CYP2B6 regulation in primary human hepatocytes. Drug Metab Dispos 31:620–630

    PubMed  CAS  Google Scholar 

  78. Loose DS, Stover EP, Feldman D (1983) Ketoconazole binds to glucocorticoid receptors and exhibits glucocorticoid antagonist activity in cultured cells. J Clin Invest 72:404–408

    PubMed  CAS  Google Scholar 

  79. Chen Y, Kissling G, Negishi M, Goldstein JA (2005) The nuclear receptors constitutive androstane receptor and pregnane X receptor cross talk with hepatic nuclear factor 4alpha to synergistically activate the human CYP2C9 promoter. J Pharmacol Exp Ther 314:1125–1133

    PubMed  CAS  Google Scholar 

  80. Liu FJ, Song X, Yang D, Deng R, Yan B (2008) The far and distal enhancers in the CYP3A4 gene coordinate the proximal promoter in responding similarly to the pregnane X receptor but differentially to hepatocyte nuclear factor-4alpha. Biochem J 409:243–250

    PubMed  CAS  Google Scholar 

  81. Kawana K, Ikuta T, Kobayashi Y, Gotoh O, Takeda K, Kawajiri K (2003) Molecular mechanism of nuclear translocation of an orphan nuclear receptor, SXR. Mol Pharmacol 63(3):524–531

    PubMed  CAS  Google Scholar 

  82. Zelko I, Sueyoshi T, Kawamoto T, Moore R, Negishi M (2001) The peptide near the C terminus regulates receptor CAR nuclear translocation induced by xenochemicals in mouse liver. Mol Cell Biol 21(8):2838–2846

    PubMed  CAS  Google Scholar 

  83. Rencurel F, Foretz M, Kaufmann MR, Stroka D, Looser R, Leclerc I, da Silva Xavier G, Rutter GA, Viollet B, Meyer UA (2006) Stimulation of AMP-activated protein kinase is essential for the induction of drug metabolizing enzymes by phenobarbital in human and mouse liver. Mol Pharmacol 70(6):1925–1934

    PubMed  CAS  Google Scholar 

  84. Blättler SM, Rencurel F, Kaufmann MR, Meyer UA (2007) In the regulation of cytochrome P450 genes, phenobarbital targets LKB1 for necessary activation of AMP-activated protein kinase. Proc Natl Acad Sci USA 104(3):1045–1050

    PubMed  Google Scholar 

  85. Choi E, Lee S, Yeom SY, Kim GH, Lee JW, Kim SW (2005) Characterization of activating signal cointegrator-2 as a novel transcriptional coactivator of the xenobiotic nuclear receptor constitutive androstane receptor. Mol Endocrinol 19:1711–1719

    PubMed  CAS  Google Scholar 

  86. Kim HJ, Lee SK, Na SY, Choi HS, Lee JW (1998) Molecular cloning of xSRC-3, a novel transcription coactivator from Xenopus, that is related to AIB1, p/CIP, and TIF2. Mol Endocrinol 12:1038–1047

    PubMed  CAS  Google Scholar 

  87. Min G, Kemper JK, Kemper B (2002) Glucocorticoid receptor-interacting protein 1 mediates ligand-independent nuclear translocation and activation of constitutive androstane receptor in vivo. J Biol Chem 277:26356–26363

    PubMed  CAS  Google Scholar 

  88. Muangmoonchai R, Smirlis D, Wong SC, Edwards M, Phillips IR, Shephard EA (2001) Xenobiotic induction of cytochrome P450 2B1 (CYP2B1) is mediated by the orphan nuclear receptor constitutive androstane receptor (CAR) and requires steroid co-activator 1 (SRC-1) and the transcription factor Sp1. Biochem J 355:71–78

    PubMed  CAS  Google Scholar 

  89. Shiraki T, Sakai N, Kanaya E, Jingami H (2003) Activation of orphan nuclear constitutive androstane receptor requires subnuclear targeting by peroxisome proliferator-activated receptor γ coactivator-1α. A possible link between xenobiotic response and nutritional state. J Biol Chem 278:11344–11350

    PubMed  CAS  Google Scholar 

  90. Inoue K, Borchers CH, Negishi M (2006) Cohesin protein SMC1 represses the nuclear receptor CAR-mediated synergistic activation of a human P450 gene by xenobiotics. Biochem J 398:125–133

    PubMed  CAS  Google Scholar 

  91. Schmidt R, Baumann F, Knupfer H, Brauckhoff M, Horn LC, Schonfelder M, Kohler U, Preiss R (2004) CYP3A4, CYP2C9 and CYP2B6 expression and ifosfamide turnover in breast cancer tissue microsomes. Br J Cancer 90(4):911–916

    PubMed  CAS  Google Scholar 

  92. El-Rayes BF, Ali S, Heilbrun LK, Lababidi S, Bouwman D, Visscher D, Philip PA (2003) Cytochrome p450 and glutathione transferase expression in human breast cancer. Clin Cancer Res 9(5):1705–1709

    PubMed  CAS  Google Scholar 

  93. Williams JA, Phillips DH (2000) Mammary expression of xenobiotic metabolizing enzymes and their potential role in breast cancer. Cancer Res 60(17):4667–4677

    PubMed  CAS  Google Scholar 

  94. de Jonge ME, Huitema AD, van Dam SM, Beijnen JH, Rodenhuis S (2005) Significant induction of cyclophosphamide and thiotepa metabolism by phenytoin. Cancer Chemother Pharmacol 55(5):507–510

    PubMed  Google Scholar 

  95. Harmsen S, Meijerman I, Beijnen JH, Schellens JH (2007) The role of nuclear receptors in pharmacokinetic drug-drug interactions in oncology. Cancer Treat Rev 33(4):369–380

    PubMed  CAS  Google Scholar 

  96. Tsunedomi R, Iizuka N, Hamamoto Y, Uchimura S, Miyamoto T, Tamesa T, Okada T, Takemoto N, Takashima M, Sakamoto K, Hamada K, Yamada-Okabe H, Oka M (2005) Patterns of expression of cytochrome P450 genes in progression of hepatitis C virus associated hepatocellular carcinoma. Int J Oncol 27(3):661–667

    PubMed  CAS  Google Scholar 

  97. Puigserver PJ, Rhee J, Donovan CJ, Walkey J, Cliff Yoon F, Oriente Y, Kitamura J, Altomonte H, Dong D, Accili B, Spiegelman M (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423:550–555

    PubMed  CAS  Google Scholar 

  98. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426

    PubMed  CAS  Google Scholar 

  99. Kodama S, Koike C, Negishi M, Yamamoto Y (2004) Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Mol Cell Biol 2(18):7931–7940

    Google Scholar 

  100. Wolf I, Rubinek T (2008) Diabetes mellitus and breast cancer. Front Diabetes 19:97–113

    Google Scholar 

  101. Pascussi J, Busson-Le Coniat M, Maurel P, Vilarem M (2003) Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: identification of a distal glucocorticoid responsive element. Mol Endocrinol 17:42–55

    PubMed  CAS  Google Scholar 

  102. Wang H, Faucette SR, Gilbert D, Jolley SL, Sueyoshi T, Negishi M, LeCluyse EL (2003) Glucocorticoid receptor enhancement of pregnane X receptor-mediated CYP2B6 regulation in primary human hepatocytes. Drug Metab Dispos 31(5):620–630

    PubMed  CAS  Google Scholar 

  103. Chen Y, Goldstein JA (2009) The transcriptional regulation of the human CYP2C genes. Curr Drug Metab 10(6):567–578

    PubMed  CAS  Google Scholar 

  104. Hankinson O (1995) The aryl hydrocarbon receptor complex. Ann Rev Pharmacol Toxicol 35:307–340

    CAS  Google Scholar 

  105. Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 16(9):187

    Google Scholar 

  106. Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 31(8):1319–1328

    PubMed  CAS  Google Scholar 

  107. Puga A, Ma C, Marlowe JL (2009) The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem Pharmacol 77:713–722

    PubMed  CAS  Google Scholar 

  108. Mimura J, Ema M, Sogawa K, Fujii-Kuriyama Y (1999) Identification of a novel mechanism of regulation of Ah (dioxin) receptor function. Genes Dev 13(1):20–25

    PubMed  CAS  Google Scholar 

  109. Hankinson O (2005) Role of coactivators in transcriptional activation by the aryl hydrocarbon receptor. Arch Biochem Biophys 433:379–386

    PubMed  CAS  Google Scholar 

  110. Ma Q (2007) Aryl hydrocarbon receptor degradation-promoting factor (ADPF) and the control of the xenobiotic response. Mol Interv 7(3):133–137

    PubMed  Google Scholar 

  111. Wang SH, Liang CT, Liu YW, Huang MC, Huang SC, Hong WF, Su JG (2009) Crosstalk between activated forms of the aryl hydrocarbon receptor and glucocorticoid receptor. Toxicology 262(2):87–97

    PubMed  CAS  Google Scholar 

  112. Monostory K, Kohalmy K, Prough RA, Kóbori L, Vereczkey L (2005) The effect of synthetic glucocorticoid, dexamethasone on CYP1A1 inducibility in adult rat and human hepatocytes. FEBS Lett 579(1):229–235

    PubMed  CAS  Google Scholar 

  113. Dvoøak Z, Vrzal R, Pávek P, Ulrichová J (2008) An evidence for regulatory cross-talk between aryl hydrocarbon receptor and glucocorticoid receptor in HepG2 cells. Physiol Res 57:427–435

    Google Scholar 

  114. Vrzal R, Stejskalova L, Monostory K, Maurel P, Bachleda P, Pavek P, Dvorak Z (2009) Dexamethasone controls aryl hydrocarbon receptor (AhR)-mediated CYP1A1 and CYP1A2 expression and activity in primary cultures of human hepatocytes. Chem Biol Interact 179:288–296

    PubMed  CAS  Google Scholar 

  115. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706

    PubMed  Google Scholar 

  116. Pearce ST, Liu H, Radhakrishnan I, Abdelrahim M, Safe S, Jordan VC (2004) Interaction of the aryl hydrocarbon receptor ligand 6-methyl-1, 3, 8-thrichlorodibenzofuran with oestrogen receptor alpha. Cancer Res 64:2889–2897

    PubMed  CAS  Google Scholar 

  117. Safe S, Wormke M (2003) Inhibitory aryl hydrocarbon receptor-estrogen receptor alpha cross-talk and mechanisms of action. Chem Res Toxicol 16:807–816

    PubMed  CAS  Google Scholar 

  118. Matthews J, Wihlén B, Thomsen J, Gustafsson J (2005) Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor α to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol 25:5317–5328

    PubMed  CAS  Google Scholar 

  119. Han W, Pentecost BT, Pietropaolo RL, Fasco MJ, Spivack SD (2005) Estrogen receptor α increases basal and cigarette smoke extract-induced expression of CYP1A1 and CYP1B1, but not GSTP1 in normal human bronchial epithelial cells. Mol Carcinogen 44:202–211

    CAS  Google Scholar 

  120. Ohtake F, Takeyama K, Matsumoto H, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y, Kato S (2003) Modulation of oestrogen receptor signaling by association with the activated dioxin receptor. Nature 423:545–550

    PubMed  CAS  Google Scholar 

  121. Shibata H, Spencer TE, Onate SA, Jenster G, Tsai SY, Tsai MJ, O’Malley BW (1997) Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Recent Prog Horm Res 52:141–164

    PubMed  CAS  Google Scholar 

  122. Monostory K, Pascussi JM, Kóbori L, Dvorak Z (2009) Hormonal regulation of CYP1A expression. Drug Metab Rev 41(4):547–572

    PubMed  CAS  Google Scholar 

  123. Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999) Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18:1905–1914

    PubMed  CAS  Google Scholar 

  124. Fritz WA, Lin TM, Peterson RE (2008) The aryl hydrocarbon receptor (AhR) inhibits vanadate-induced vascular endothelial growth factor (VEGF) production in TRAMP prostates. Carcinogenesis 29(5):1077–1082

    PubMed  CAS  Google Scholar 

  125. Nishida CR, Lee M, de Montellano PR (2010) Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol Pharmacol 78(3):497–502

    PubMed  CAS  Google Scholar 

  126. Karlgren M, Miura S, Ingelman-Sundberg M (2005) Novel extrahepatic cytochrome P450s. Toxicol Appl Pharmacol 207:57–61

    PubMed  Google Scholar 

  127. Rylander T, Neve EP, Ingelman-Sundberg M, Oscarson M (2001) Identification and tissue distribution of the novel human cytochrome P450 2S1 (CYP2S1). Biochem Biophys Res Commun 281:529–535

    PubMed  CAS  Google Scholar 

  128. Rivera SP, Wang F, Saarikoski ST, Taylor RT, Chapman B, Zhang R, Hankinson O (2007) A novel promoter element containing multiple overlapping xenobiotic and hypoxia response elements mediates induction of P4502S1 by both dioxin and hypoxia. J Biol Chem 282:10881–10893

    PubMed  CAS  Google Scholar 

  129. Downie D, McFadyen MC, Rooney PH, Cruickshank ME, Parkin DE, Miller ID, Telfer C, Melvin WT, Murray GI (2005) Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin Cancer Res 11:7369–7375

    PubMed  CAS  Google Scholar 

  130. Kumarakulasingham M, Rooney PH, Dundas SR, Telfer C, Melvin WT, Curran S, Murray GI (2005) Cytochrome p450 profile of colorectal cancer: identification of markers of prognosis. Clin Cancer Res 11:3758–3765

    PubMed  CAS  Google Scholar 

  131. Shih AY, Li P, Murphy TH (2005) A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J Neurosci 25(44):10321–10335

    PubMed  CAS  Google Scholar 

  132. Tamasi V, Jeffries JM, Arteel GE, Falkner KC (2004) Ebselen augments its peroxidase activity by inducing nrf-2-dependent transcription. Arch Biochem Biophys 431(2):161–168

    PubMed  CAS  Google Scholar 

  133. Douglas KT (1987) Mechanism of action of glutathione-dependent enzymes. Adv Enzymol Relat Areas Mol Biol 59103–59167

  134. Sau F, Pellizzari Tregno F, Valentino F, Federici G, Caccuri AM (2010) Glutathione transferases and development of new principles to overcome drug resistance. Arch Biochem Biophys 500116–122

  135. Tong KI, Kobayashi A, Katsuoka F, Yamamoto M (2006) Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol Chem 387:1311–1320

    PubMed  CAS  Google Scholar 

  136. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34:176–188

    PubMed  CAS  Google Scholar 

  137. Lämsä V, Levonen AL, Leinonen H, Ylä-Herttuala S, Yamamoto M, Hakkola J (2010) Cytochrome P450 2A5 constitutive expression and induction by heavy metals is dependent on redox-sensitive transcription factor Nrf2 in liver. Chem Res Toxicol 23(5):977–985

    PubMed  Google Scholar 

  138. Miao W, Hu L, Scrivens PJ, Batist G (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280:20340–20348

    PubMed  CAS  Google Scholar 

  139. Prochaska HJ, Talalay P (1988) Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res 48:4776–4782

    PubMed  CAS  Google Scholar 

  140. Kohle C, Bock KW (2007) Coordinate regulation of Phase I and II xenobiotic metabolisms by the Ah receptor and Nrf2. Biochem Pharmacol 73:1853–1862

    PubMed  Google Scholar 

  141. Kensler TW, Wakabayashi N, Slocum SL, Skoko JJ, Shin S (2010) When Nrf2 talks, who’s listening? Antioxid Redox Signal 13(11):1649–1663

    PubMed  Google Scholar 

  142. Hayes JD, Dinkova-Kostova AT, McMahon M (2009) Cross-talk between transcription factors AhR and Nrf2: lessons for cancer chemoprevention from dioxin. Toxicol Sci 111(2):199–201

    PubMed  CAS  Google Scholar 

  143. Marden NY, Fiala-Beer E, Xiang SH, Murray M (2003) Role of activator protein-1 in the down-regulation of the human CYP2J2 gene in hypoxia. Biochem J 373:669–680

    PubMed  CAS  Google Scholar 

  144. Marden NY, Murray M (2005) Characterization of a c-Jun-responsive module in the 5′flank of the human CYP2J2 gene that regulates transactivation. Biochem J 391:631–640

    PubMed  CAS  Google Scholar 

  145. Lee AC, Murray M (2010) Up-regulation of human CYP2J2 in HepG2 cells by butylated hydroxyanisole is mediated by c-Jun and Nrf2. Mol Pharmacol 77(6):987–994

    PubMed  CAS  Google Scholar 

  146. Jiang JG, Chen CL, Card JW, Yang S, Chen JX, Fu XN, Ning YG, Xiao X, Zeldin DC, Wang DW (2005) Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 65(11):4707–4715

    PubMed  CAS  Google Scholar 

  147. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    PubMed  CAS  Google Scholar 

  148. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    PubMed  CAS  Google Scholar 

  149. Molnár V, Tamási V, Bakos B, Wiener Z, Falus A (2008) Changes in miRNA expression in solid tumors: an miRNA profiling in melanomas. Semin Cancer Biol 18(2):111–122

    PubMed  Google Scholar 

  150. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66(18):9090–9098

    PubMed  CAS  Google Scholar 

  151. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Title microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433(7027):769–773

    PubMed  CAS  Google Scholar 

  152. Kalscheuer S, Zhang X, Zeng Y, Upadhyaya P (2008) Differential expression of microRNAs in early-stage neoplastic transformation in the lungs of F344 rats chronically treated with the tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 29(12):2394–2399

    PubMed  CAS  Google Scholar 

  153. Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T (2010) Human CYP2E1 is regulated by miR-378. Biochem Pharmacol 79(7):1045–1052

    PubMed  CAS  Google Scholar 

  154. Lamba V, Panetta JC, Strom S, Schuetz EG (2010) Genetic predictors of interindividual variability in hepatic CYP3A4 expression. J Pharmacol Exp Ther 332:1088–1099

    PubMed  CAS  Google Scholar 

  155. Pan YZ, Gao W, Yu AM (2009) MicroRNAs regulate CYP3A4 expression via direct, indirect targeting. Drug Metab Dispos 37(10):2112–2117

    PubMed  CAS  Google Scholar 

  156. Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283(15):9674–9680

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Tamási.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamási, V., Monostory, K., Prough, R.A. et al. Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell. Mol. Life Sci. 68, 1131–1146 (2011). https://doi.org/10.1007/s00018-010-0600-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0600-7

Keywords

Navigation