Skip to main content
Log in

Histone deacetylase inhibitors and cell death

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    CAS  PubMed  Google Scholar 

  2. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    CAS  PubMed Central  PubMed  Google Scholar 

  3. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749

    PubMed Central  PubMed  Google Scholar 

  4. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    CAS  PubMed  Google Scholar 

  5. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107:600–608

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216

    CAS  PubMed  Google Scholar 

  7. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23

    CAS  PubMed  Google Scholar 

  8. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411

    CAS  PubMed  Google Scholar 

  10. Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci USA 96:4868–4873

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA 106:7876–7881

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Haberland M, Carrer M, Mokalled MH, Montgomery RL, Olson EN (2010) Redundant control of adipogenesis by histone deacetylases 1 and 2. J Biol Chem 285:14663–14670

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Barnes PJ (2005) Targeting histone deacetylase 2 in chronic obstructive pulmonary disease treatment. Expert Opin Ther Targets 9:1111–1121

    CAS  PubMed  Google Scholar 

  15. Yang XJ, Gregoire S (2005) Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 25:2873–2884

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Fischle W, Kiermer V, Dequiedt F, Verdin E (2001) The emerging role of class II histone deacetylases. Biochem Cell Biol 79:337–348

    CAS  PubMed  Google Scholar 

  17. Gao L, Cueto MA, Asselbergs F, Atadja P (2002) Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem 277:25748–25755

    CAS  PubMed  Google Scholar 

  18. Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377–381

    CAS  PubMed  Google Scholar 

  19. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    CAS  PubMed  Google Scholar 

  20. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273

    CAS  PubMed  Google Scholar 

  21. Yang WM, Inouye C, Zeng Y, Bearss D, Seto E (1996) Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA 93:12845–12850

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277:25904–25913

    CAS  PubMed  Google Scholar 

  23. Kawai H, Li H, Avraham S, Jiang S, Avraham HK (2003) Overexpression of histone deacetylase HDAC1 modulates breast cancer progression by negative regulation of estrogen receptor alpha. Int J Cancer 107:353–358

    CAS  PubMed  Google Scholar 

  24. Gobinet J, Carascossa S, Cavailles V, Vignon F, Nicolas JC, Jalaguier S (2005) SHP represses transcriptional activity via recruitment of histone deacetylases. Biochemistry 44:6312–6320

    CAS  PubMed  Google Scholar 

  25. Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML (2001) A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J 20:1739–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23:7601–7610

    CAS  PubMed  Google Scholar 

  27. Thevenet L et al (2004) Regulation of human SRY subcellular distribution by its acetylation/deacetylation. EMBO J 23:3336–3345

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Yang WM, Yao YL, Sun JM, Davie JR, Seto E (1997) Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem 272:28001–28007

    CAS  PubMed  Google Scholar 

  29. Watamoto K, Towatari M, Ozawa Y, Miyata Y, Okamoto M, Abe A, Naoe T, Saito H (2003) Altered interaction of HDAC5 with GATA-1 during MEL cell differentiation. Oncogene 22:9176–9184

    CAS  PubMed  Google Scholar 

  30. Ozawa Y, Towatari M, Tsuzuki S, Hayakawa F, Maeda T, Miyata Y, Tanimoto M, Saito H (2001) Histone deacetylase 3 associates with and represses the transcription factor GATA-2. Blood 98:2116–2123

    CAS  PubMed  Google Scholar 

  31. Chen L, Fischle W, Verdin E, Greene WC (2001) Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293:1653–1657

    CAS  Google Scholar 

  32. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    CAS  PubMed  Google Scholar 

  33. Bali P et al (2005) Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors. J Biol Chem 280:26729–26734

    CAS  PubMed  Google Scholar 

  34. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    CAS  PubMed  Google Scholar 

  35. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    CAS  PubMed  Google Scholar 

  37. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12:51–62

    CAS  PubMed  Google Scholar 

  38. Jeong J, Juhn K, Lee H, Kim SH, Min BH, Lee KM, Cho MH, Park GH, Lee KH (2007) SIRT1 promotes DNA repair activity and deacetylation of Ku70. Exp Mol Med 39:8–13

    CAS  PubMed  Google Scholar 

  39. Bouras T, Fu M, Sauve AA, Wang F, Quong AA, Perkins ND, Hay RT, Gu W, Pestell RG (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280:10264–10276

    CAS  PubMed  Google Scholar 

  40. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11:437–444

    CAS  PubMed  Google Scholar 

  41. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103:10230–10235

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Haigis MC et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    CAS  PubMed  Google Scholar 

  43. Michishita E et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435

    CAS  PubMed  Google Scholar 

  45. Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    CAS  PubMed  Google Scholar 

  46. Haigis MC, Guarente LP (2006) Mammalian sirtuins–emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    CAS  PubMed  Google Scholar 

  47. LeBoeuf M, Terrell A, Trivedi S, Sinha S, Epstein JA, Olson EN, Morrisey EE, Millar SE (2010) Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev Cell 19:807–818

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    CAS  PubMed  Google Scholar 

  49. Choi JH, Kwon HJ, Yoon BI, Kim JH, Han SU, Joo HJ, Kim DY (2001) Expression profile of histone deacetylase 1 in gastric cancer tissues. Jpn J Cancer Res 92:1300–1304

    CAS  PubMed  Google Scholar 

  50. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    CAS  PubMed  Google Scholar 

  51. Zhang Z et al (2005) Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat 94:11–16

    CAS  PubMed  Google Scholar 

  52. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5:455–463

    CAS  PubMed  Google Scholar 

  53. Wilson AJ et al (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    CAS  PubMed  Google Scholar 

  54. Zhang Z et al (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10:6962–6968

    CAS  PubMed  Google Scholar 

  55. Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T (2004) Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer 112:26–32

    CAS  PubMed  Google Scholar 

  56. Zhong Q, Gao W, Du F, Wang X (2005) Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 121:1085–1095

    CAS  PubMed  Google Scholar 

  57. Zhang J, Kan S, Huang B, Hao Z, Mak TW, Zhong Q (2011) Mule determines the apoptotic response to HDAC inhibitors by targeted ubiquitination and destruction of HDAC2. Genes Dev 25:2610–2618

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163

    CAS  PubMed  Google Scholar 

  59. Mitsiades CS et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Peart MJ, Smyth GK, van Laar RK, Bowtell DD, Richon VM, Marks PA, Holloway AJ, Johnstone RW (2005) Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:3697–3702

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Dokmanovic M, Marks PA (2005) Prospects: histone deacetylase inhibitors. J Cell Biochem 96:293–304

    CAS  PubMed  Google Scholar 

  62. Balasubramanian S, Verner E, Buggy JJ (2009) Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 280:211–221

    CAS  PubMed  Google Scholar 

  63. Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W (2010) Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta 1799:726–739

    CAS  PubMed  Google Scholar 

  64. Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17:855–868

    CAS  PubMed  Google Scholar 

  65. Yoshida M, Hoshikawa Y, Koseki K, Mori K, Beppu T (1990) Structural specificity for biological activity of trichostatin A, a specific inhibitor of mammalian cell cycle with potent differentiation-inducing activity in Friend leukemia cells. J Antibiot (Tokyo) 43:1101–1106

    CAS  Google Scholar 

  66. Tsuji N, Kobayashi M, Nagashima K, Wakisaka Y, Koizumi K (1976) A new antifungal antibiotic, trichostatin. J Antibiot (Tokyo) 29:1–6

    CAS  Google Scholar 

  67. Duvic M et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Marks PA, Breslow R (2007) Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25:84–90

    CAS  PubMed  Google Scholar 

  69. Olsen EA et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25:3109–3115

    CAS  PubMed  Google Scholar 

  70. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    CAS  PubMed  Google Scholar 

  71. Coiffier B et al (2012) Results from a pivotal, open-label, phase II study of romidepsin in relapsed or refractory peripheral T-cell lymphoma after prior systemic therapy. J Clin Oncol 30:631–636

    CAS  PubMed  Google Scholar 

  72. Piekarz RL et al (2011) Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117:5827–5834

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Whittaker SJ et al (2010) Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol 28:4485–4491

    CAS  PubMed  Google Scholar 

  74. Blum KA et al (2009) Phase II study of the histone deacetylase inhibitor MGCD0103 in patients with previously treated chronic lymphocytic leukaemia. Br J Haematol 147:507–514

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Kuendgen A, Knipp S, Fox F, Strupp C, Hildebrandt B, Steidl C, Germing U, Haas R, Gattermann N (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 1):61–66

    CAS  PubMed  Google Scholar 

  76. Giaccone G et al (2011) Phase II study of belinostat in patients with recurrent or refractory advanced thymic epithelial tumors. J Clin Oncol 29:2052–2059

    PubMed Central  PubMed  Google Scholar 

  77. Gimsing P, Hansen M, Knudsen LM, Knoblauch P, Christensen IJ, Ooi CE, Buhl-Jensen P (2008) A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 81:170–176

    CAS  PubMed  Google Scholar 

  78. Dimicoli S et al (2012) Phase II study of the histone deacetylase inhibitor panobinostat (LBH589) in patients with low or intermediate-1 risk myelodysplastic syndrome. Am J Hematol 87:127–129

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ghobrial IM et al (2013) Results of a phase 2 trial of the single-agent histone deacetylase inhibitor panobinostat in patients with relapsed/refractory Waldenstrom macroglobulinemia. Blood 121:1296–1303

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Tan J, Cang S, Ma Y, Petrillo RL, Liu D (2010) Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 3:5

    PubMed Central  PubMed  Google Scholar 

  81. de Bono JS et al (2008) Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res 14:6663–6673

    PubMed  Google Scholar 

  82. Gojo I et al (2007) Phase 1 and pharmacologic study of MS-275, a histone deacetylase inhibitor, in adults with refractory and relapsed acute leukemias. Blood 109:2781–2790

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Hauschild A et al (2008) Multicenter phase II trial of the histone deacetylase inhibitor pyridylmethyl-N-{4-[(2-aminophenyl)-carbamoyl]-benzyl}-carbamate in pretreated metastatic melanoma. Melanoma Res 18:274–278

    CAS  PubMed  Google Scholar 

  84. Younes A et al (2011) Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, phase 2 trial. Lancet Oncol 12:1222–1228

    CAS  PubMed  Google Scholar 

  85. McMahon L et al (2010) A randomized phase II trial of Arginine Butyrate with standard local therapy in refractory sickle cell leg ulcers. Br J Haematol 151:516–524

    CAS  PubMed  Google Scholar 

  86. Villa R et al (2006) The methyl-CpG binding protein MBD1 is required for PML-RARalpha function. Proc Natl Acad Sci USA 103:1400–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Fenrick R, Hiebert SW (1998) Role of histone deacetylases in acute leukemia. J Cell Biochem Suppl 30–31:194–202

    PubMed  Google Scholar 

  88. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE (2005) Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res 11:4912–4922

    CAS  PubMed  Google Scholar 

  89. Frew AJ, Johnstone RW, Bolden JE (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280:125–133

    CAS  PubMed  Google Scholar 

  90. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    CAS  PubMed  Google Scholar 

  91. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    CAS  PubMed  Google Scholar 

  92. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    CAS  PubMed  Google Scholar 

  93. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171

    CAS  PubMed  Google Scholar 

  94. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290

    CAS  PubMed  Google Scholar 

  95. Lagneaux L et al (2007) Valproic acid induces apoptosis in chronic lymphocytic leukemia cells through activation of the death receptor pathway and potentiates TRAIL response. Exp Hematol 35:1527–1537

    CAS  PubMed  Google Scholar 

  96. Carlisi D, Lauricella M, D’Anneo A, Emanuele S, Angileri L, Di Fazio P, Santulli A, Vento R, Tesoriere G (2009) The histone deacetylase inhibitor suberoylanilide hydroxamic acid sensitises human hepatocellular carcinoma cells to TRAIL-induced apoptosis by TRAIL-DISC activation. Eur J Cancer 45:2425–2438

    CAS  PubMed  Google Scholar 

  97. VanOosten RL, Moore JM, Karacay B, Griffith TS (2005) Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression. Cancer Biol Ther 4:1104–1112

    CAS  PubMed  Google Scholar 

  98. Nebbioso A et al (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat Med 11:77–84

    CAS  PubMed  Google Scholar 

  99. Inoue S, MacFarlane M, Harper N, Wheat LM, Dyer MJ, Cohen GM (2004) Histone deacetylase inhibitors potentiate TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in lymphoid malignancies. Cell Death Differ 11(Suppl 2):S193–S206

    CAS  PubMed  Google Scholar 

  100. Inoue S, Harper N, Walewska R, Dyer MJ, Cohen GM (2009) Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis. Mol Cancer Ther 8:3088–3097

    CAS  PubMed  Google Scholar 

  101. Ellis L et al (2009) The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood 114:380–393

    CAS  PubMed  Google Scholar 

  102. Jiang X, Wang X (2004) Cytochrome C-mediated apoptosis. Annu Rev Biochem 73:87–106

    CAS  PubMed  Google Scholar 

  103. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    CAS  PubMed  Google Scholar 

  104. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    CAS  PubMed  Google Scholar 

  105. Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    CAS  PubMed  Google Scholar 

  107. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    CAS  PubMed  Google Scholar 

  108. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862

    CAS  PubMed  Google Scholar 

  109. Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    CAS  PubMed  Google Scholar 

  110. Srinivasula SM et al (2001) A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116

    CAS  PubMed  Google Scholar 

  111. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    CAS  PubMed  Google Scholar 

  112. Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444

    CAS  PubMed  Google Scholar 

  113. Nijhawan D, Fang M, Traer E, Zhong Q, Gao W, Du F, Wang X (2003) Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 17:1475–1486

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Zong WX, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15

    CAS  PubMed  Google Scholar 

  115. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    CAS  PubMed  Google Scholar 

  116. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    CAS  PubMed  Google Scholar 

  117. Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    CAS  PubMed  Google Scholar 

  119. Iacomino G, Medici MC, Russo GL (2008) Valproic acid sensitizes K562 erythroleukemia cells to TRAIL/Apo2L-induced apoptosis. Anticancer Res 28:855–864

    CAS  PubMed  Google Scholar 

  120. Gillenwater AM, Zhong M, Lotan R (2007) Histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis through both mitochondrial and Fas (Cd95) signaling in head and neck squamous carcinoma cells. Mol Cancer Ther 6:2967–2975

    CAS  PubMed  Google Scholar 

  121. Bai LY, Omar HA, Chiu CF, Chi ZP, Hu JL, Weng JR (2011) Antitumor effects of (S)-HDAC42, a phenylbutyrate-derived histone deacetylase inhibitor, in multiple myeloma cells. Cancer Chemother Pharmacol 68:489–496

    CAS  PubMed  Google Scholar 

  122. Fandy TE, Srivastava RK (2006) Trichostatin A sensitizes TRAIL-resistant myeloma cells by downregulation of the antiapoptotic Bcl-2 proteins. Cancer Chemother Pharmacol 58:471–477

    CAS  PubMed  Google Scholar 

  123. Cao XX, Mohuiddin I, Ece F, McConkey DJ, Smythe WR (2001) Histone deacetylase inhibitor downregulation of bcl-xl gene expression leads to apoptotic cell death in mesothelioma. Am J Respir Cell Mol Biol 25:562–568

    CAS  PubMed  Google Scholar 

  124. Armeanu S, Pathil A, Venturelli S, Mascagni P, Weiss TS, Gottlicher M, Gregor M, Lauer UM, Bitzer M (2005) Apoptosis on hepatoma cells but not on primary hepatocytes by histone deacetylase inhibitors valproate and ITF2357. J Hepatol 42:210–217

    CAS  PubMed  Google Scholar 

  125. Mitsiades N et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062

    CAS  PubMed  Google Scholar 

  126. Shao W et al (2010) Activity of deacetylase inhibitor panobinostat (LBH589) in cutaneous T-cell lymphoma models: defining molecular mechanisms of resistance. Int J Cancer 127:2199–2208

    CAS  PubMed  Google Scholar 

  127. Peart MJ, Tainton KM, Ruefli AA, Dear AE, Sedelies KA, O’Reilly LA, Waterhouse NJ, Trapani JA, Johnstone RW (2003) Novel mechanisms of apoptosis induced by histone deacetylase inhibitors. Cancer Res 63:4460–4471

    CAS  PubMed  Google Scholar 

  128. Lindemann RK et al (2007) Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma. Proc Natl Acad Sci USA 104:8071–8076

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Matthews GM, Newbold A, Johnstone RW (2012) Intrinsic and extrinsic apoptotic pathway signaling as determinants of histone deacetylase inhibitor antitumor activity. Adv Cancer Res 116:165–197

    CAS  PubMed  Google Scholar 

  130. Zhao Y, Tan J, Zhuang L, Jiang X, Liu ET, Yu Q (2005) Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim. Proc Natl Acad Sci USA 102:16090–16095

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA (2006) Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. Proc Natl Acad Sci USA 103:15540–15545

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wiegmans AP et al (2011) Deciphering the molecular events necessary for synergistic tumor cell apoptosis mediated by the histone deacetylase inhibitor vorinostat and the BH3 mimetic ABT-737. Cancer Res 71:3603–3615

    CAS  PubMed  Google Scholar 

  133. Xargay-Torrent S, Lopez-Guerra M, Saborit-Villarroya I, Rosich L, Campo E, Roue G, Colomer D (2011) Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res 17:3956–3968

    CAS  PubMed  Google Scholar 

  134. Donadelli M et al (2007) Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta 1773:1095–1106

    CAS  PubMed  Google Scholar 

  135. Inoue S, Riley J, Gant TW, Dyer MJ, Cohen GM (2007) Apoptosis induced by histone deacetylase inhibitors in leukemic cells is mediated by Bim and Noxa. Leukemia 21:1773–1782

    CAS  PubMed  Google Scholar 

  136. Rosato RR, Almenara JA, Dai Y, Grant S (2003) Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol Cancer Ther 2:1273–1284

    CAS  PubMed  Google Scholar 

  137. Susin SA et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    CAS  PubMed  Google Scholar 

  138. Fandy TE, Shankar S, Ross DD, Sausville E, Srivastava RK (2005) Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma. Neoplasia 7:646–657

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Guo F et al (2004) Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64:2580–2589

    CAS  PubMed  Google Scholar 

  140. Maggio SC et al (2004) The histone deacetylase inhibitor MS-275 interacts synergistically with fludarabine to induce apoptosis in human leukemia cells. Cancer Res 64:2590–2600

    CAS  PubMed  Google Scholar 

  141. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18:2195–2224

    CAS  PubMed  Google Scholar 

  142. Rodriguez MS, Thompson J, Hay RT, Dargemont C (1999) Nuclear retention of IkappaBalpha protects it from signal-induced degradation and inhibits nuclear factor kappaB transcriptional activation. J Biol Chem 274:9108–9115

    CAS  PubMed  Google Scholar 

  143. Yao J, Duan L, Fan M, Wu X (2006) NF-kappaB signaling pathway is involved in growth inhibition, G2/M arrest and apoptosis induced by Trichostatin A in human tongue carcinoma cells. Pharmacol Res 54:406–413

    CAS  PubMed  Google Scholar 

  144. Grabiec AM et al (2010) Histone deacetylase inhibitors suppress inflammatory activation of rheumatoid arthritis patient synovial macrophages and tissue. J Immunol 184:2718–2728

    CAS  PubMed  Google Scholar 

  145. Chen Y, Shu W, Chen W, Wu Q, Liu H, Cui G (2007) Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells. Basic Clin Pharmacol Toxicol 101:427–433

    CAS  PubMed  Google Scholar 

  146. Kaler P, Sasazuki T, Shirasawa S, Augenlicht L, Klampfer L (2008) HDAC2 deficiency sensitizes colon cancer cells to TNFalpha-induced apoptosis through inhibition of NF-kappaB activity. Exp Cell Res 314:1507–1518

    CAS  PubMed  Google Scholar 

  147. Chen LF, Greene WC (2003) Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. J Mol Med (Berl) 81:549–557

    CAS  Google Scholar 

  148. Kim YK, Seo DW, Kang DW, Lee HY, Han JW, Kim SN (2006) Involvement of HDAC1 and the PI3 K/PKC signaling pathways in NF-kappaB activation by the HDAC inhibitor apicidin. Biochem Biophys Res Commun 347:1088–1093

    CAS  PubMed  Google Scholar 

  149. Zhu H, Shan L, Schiller PW, Mai A, Peng T (2010) Histone deacetylase-3 activation promotes tumor necrosis factor-alpha (TNF-alpha) expression in cardiomyocytes during lipopolysaccharide stimulation. J Biol Chem 285:9429–9436

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    CAS  PubMed  Google Scholar 

  151. Menendez D, Inga A, Resnick MA (2009) The expanding universe of p53 targets. Nat Rev Cancer 9:724–737

    CAS  PubMed  Google Scholar 

  152. Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277:50607–50611

    CAS  PubMed  Google Scholar 

  153. Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    CAS  PubMed  Google Scholar 

  154. Feng L, Lin T, Uranishi H, Gu W, Xu Y (2005) Functional analysis of the roles of posttranslational modifications at the p53 C terminus in regulating p53 stability and activity. Mol Cell Biol 25:5389–5395

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2:a000935

    PubMed Central  PubMed  Google Scholar 

  156. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    CAS  PubMed  Google Scholar 

  157. Sowa Y, Orita T, Minamikawa-Hiranabe S, Mizuno T, Nomura H, Sakai T (1999) Sp3, but not Sp1, mediates the transcriptional activation of the p21/WAF1/Cip1 gene promoter by histone deacetylase inhibitor. Cancer Res 59:4266–4270

    CAS  PubMed  Google Scholar 

  158. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA (2004) Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 101:1241–1246

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB, Grant S (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18:7016–7025

    CAS  PubMed  Google Scholar 

  160. Roy S, Packman K, Jeffrey R, Tenniswood M (2005) Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells. Cell Death Differ 12:482–491

    CAS  PubMed  Google Scholar 

  161. Kawano T, Akiyama M, Agawa-Ohta M, Mikami-Terao Y, Iwase S, Yanagisawa T, Ida H, Agata N, Yamada H (2010) Histone deacetylase inhibitors valproic acid and depsipeptide sensitize retinoblastoma cells to radiotherapy by increasing H2AX phosphorylation and p53 acetylation-phosphorylation. Int J Oncol 37:787–795

    CAS  PubMed  Google Scholar 

  162. Hsu YF, Sheu JR, Hsiao G, Lin CH, Chang TH, Chiu PT, Wang CY, Hsu MJ (2011) p53 in trichostatin A induced C6 glioma cell death. Biochim Biophys Acta 1810:504–513

    CAS  PubMed  Google Scholar 

  163. Feng L et al (2013) Histone deacetylase 3 inhibits expression of PUMA in gastric cancer cells. J Mol Med (Berl) 91:49–58

    CAS  Google Scholar 

  164. Suk K, Chang I, Kim YH, Kim S, Kim JY, Kim H, Lee MS (2001) Interferon gamma (IFNgamma) and tumor necrosis factor alpha synergism in ME-180 cervical cancer cell apoptosis and necrosis. IFNgamma inhibits cytoprotective NF-kappa B through STAT1/IRF-1 pathways. J Biol Chem 276:13153–13159

    CAS  PubMed  Google Scholar 

  165. Nusinzon I, Horvath CM (2003) Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc Natl Acad Sci USA 100:14742–14747

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Kramer OH, Baus D, Knauer SK, Stein S, Jager E, Stauber RH, Grez M, Pfitzner E, Heinzel T (2006) Acetylation of Stat1 modulates NF-kappaB activity. Genes Dev 20:473–485

    PubMed Central  PubMed  Google Scholar 

  167. Dowdy SC, Jiang S, Zhou XC, Hou X, Jin F, Podratz KC, Jiang SW (2006) Histone deacetylase inhibitors and paclitaxel cause synergistic effects on apoptosis and microtubule stabilization in papillary serous endometrial cancer cells. Mol Cancer Ther 5:2767–2776

    CAS  PubMed  Google Scholar 

  168. Marks PA (2006) Thioredoxin in cancer–role of histone deacetylase inhibitors. Semin Cancer Biol 16:436–443

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Rosato RR, Maggio SC, Almenara JA, Payne SG, Atadja P, Spiegel S, Dent P, Grant S (2006) The histone deacetylase inhibitor LAQ824 induces human leukemia cell death through a process involving XIAP down-regulation, oxidative injury, and the acid sphingomyelinase-dependent generation of ceramide. Mol Pharmacol 69:216–225

    CAS  PubMed  Google Scholar 

  170. Ruefli AA, Ausserlechner MJ, Bernhard D, Sutton VR, Tainton KM, Kofler R, Smyth MJ, Johnstone RW (2001) The histone deacetylase inhibitor and chemotherapeutic agent suberoylanilide hydroxamic acid (SAHA) induces a cell-death pathway characterized by cleavage of Bid and production of reactive oxygen species. Proc Natl Acad Sci USA 98:10833–10838

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Rosato RR, Almenara JA, Grant S (2003) The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res 63:3637–3645

    CAS  PubMed  Google Scholar 

  172. Yoshioka T, Yogosawa S, Yamada T, Kitawaki J, Sakai T (2013) Combination of a novel HDAC inhibitor OBP-801/YM753 and a PI3K inhibitor LY294002 synergistically induces apoptosis in human endometrial carcinoma cells due to increase of Bim with accumulation of ROS. Gynecol Oncol 129:425–432

    CAS  PubMed  Google Scholar 

  173. Yu C, Friday BB, Lai JP, McCollum A, Atadja P, Roberts LR, Adjei AA (2007) Abrogation of MAPK and Akt signaling by AEE788 synergistically potentiates histone deacetylase inhibitor-induced apoptosis through reactive oxygen species generation. Clin Cancer Res 13:1140–1148

    CAS  PubMed  Google Scholar 

  174. Rosato RR, Almenara JA, Maggio SC, Coe S, Atadja P, Dent P, Grant S (2008) Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions. Mol Cancer Ther 7:3285–3297

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, Richon VM (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 99:11700–11705

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Zhu Y, Das K, Wu J, Lee MH, Tan P (2014) RNH1 regulation of reactive oxygen species contributes to histone deacetylase inhibitor resistance in gastric cancer cells. Oncogene 33:1527–1537

    CAS  PubMed  Google Scholar 

  177. Yaseen A, Chen S, Hock S, Rosato R, Dent P, Dai Y, Grant S (2012) Resveratrol sensitizes acute myelogenous leukemia cells to histone deacetylase inhibitors through reactive oxygen species-mediated activation of the extrinsic apoptotic pathway. Mol Pharmacol 82:1030–1041

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Gartel AL (2005) The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res 29:1237–1238

    CAS  PubMed  Google Scholar 

  180. Burgess AJ, Pavey S, Warrener R, Hunter LJ, Piva TJ, Musgrove EA, Saunders N, Parsons PG, Gabrielli BG (2001) Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol 60:828–837

    CAS  PubMed  Google Scholar 

  181. Ocker M, Schneider-Stock R (2007) Histone deacetylase inhibitors: signalling towards p21cip1/waf1. Int J Biochem Cell Biol 39:1367–1374

    CAS  PubMed  Google Scholar 

  182. Chopin V, Slomianny C, Hondermarck H, Le Bourhis X (2004) Synergistic induction of apoptosis in breast cancer cells by cotreatment with butyrate and TNF-alpha, TRAIL, or anti-Fas agonist antibody involves enhancement of death receptors’ signaling and requires P21(waf1). Exp Cell Res 298:560–573

    CAS  PubMed  Google Scholar 

  183. Newbold A, Vervoort SJ, Martin BP, Bots M, Johnstone RW (2012) Induction of autophagy does not alter the anti-tumor effects of HDAC inhibitors. Cell Death Dis 3:e387

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Choi AM, Ryter SW, Levine B (2013) Autophagy in human health and disease. N Engl J Med 368:1845–1846

    CAS  PubMed  Google Scholar 

  185. Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306:990–995

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    CAS  PubMed  Google Scholar 

  187. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    CAS  PubMed  Google Scholar 

  189. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2:211–216

    CAS  PubMed  Google Scholar 

  190. Banreti A, Sass M, Graba Y (2013) The emerging role of acetylation in the regulation of autophagy. Autophagy 9:819–829

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Lin SY et al (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336:477–481

    CAS  PubMed  Google Scholar 

  192. Yi C et al (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336:474–477

    CAS  PubMed  Google Scholar 

  193. Yi C, Yu L (2012) How does acetylation regulate autophagy? Autophagy 8:1529–1530

    CAS  PubMed  Google Scholar 

  194. True O, Matthias P (2012) Interplay between histone deacetylases and autophagy–from cancer therapy to neurodegeneration. Immunol Cell Biol 90:78–84

    PubMed  Google Scholar 

  195. Pandey UB et al (2007) HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447:859–863

    CAS  PubMed  Google Scholar 

  196. Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP (2007) HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration. Autophagy 3:643–645

    CAS  PubMed  Google Scholar 

  197. Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, Rothermel BA, Gillette TG, Hill JA (2011) Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci USA 108:4123–4128

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Oh M, Choi IK, Kwon HJ (2008) Inhibition of histone deacetylase1 induces autophagy. Biochem Biophys Res Commun 369:1179–1183

    CAS  PubMed  Google Scholar 

  199. Oehme I et al (2013) Histone deacetylase 10 promotes autophagy-mediated cell survival. Proc Natl Acad Sci USA 110:E2592–E2601

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379

    CAS  PubMed Central  PubMed  Google Scholar 

  201. Takasaka N et al (2014) Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol 192:958–968

    CAS  PubMed  Google Scholar 

  202. Rikiishi H (2011) Autophagic and apoptotic effects of HDAC inhibitors on cancer cells. J Biomed Biotechnol 2011:830260

    PubMed Central  PubMed  Google Scholar 

  203. Carew JS, Nawrocki ST, Giles FJ, Cleveland JL (2008) Targeting autophagy: a novel anticancer strategy with therapeutic implications for imatinib resistance. Biologics 2:201–204

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Carew JS et al (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Torgersen ML, Engedal N, Boe SO, Hokland P, Simonsen A (2013) Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood 122:2467–2476

    CAS  PubMed  Google Scholar 

  206. Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X (2012) Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci USA 109:6561–6565

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Ahn MY, Ahn SG, Yoon JH (2011) Apicidin, a histone deaceylase inhibitor, induces both apoptosis and autophagy in human oral squamous carcinoma cells. Oral Oncol 47:1032–1038

    CAS  PubMed  Google Scholar 

  208. Rao R et al (2012) Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells. Mol Cancer Ther 11:973–983

    CAS  PubMed  Google Scholar 

  209. Thomas S, Thurn KT, Bicaku E, Marchion DC, Munster PN (2011) Addition of a histone deacetylase inhibitor redirects tamoxifen-treated breast cancer cells into apoptosis, which is opposed by the induction of autophagy. Breast Cancer Res Treat 130:437–447

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Carew JS et al (2009) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459

    Google Scholar 

  211. Li J et al (2010) Proteomic analysis revealed association of aberrant ROS signaling with suberoylanilide hydroxamic acid-induced autophagy in Jurkat T-leukemia cells. Autophagy 6:711–724

    CAS  PubMed  Google Scholar 

  212. Watanabe M et al (2009) Induction of autophagy in malignant rhabdoid tumor cells by the histone deacetylase inhibitor FK228 through AIF translocation. Int J Cancer 124:55–67

    CAS  PubMed  Google Scholar 

  213. Lopez G, Torres K, Lev D (2011) Autophagy blockade enhances HDAC inhibitors’ pro-apoptotic effects: potential implications for the treatment of a therapeutic-resistant malignancy. Autophagy 7:440–441

    PubMed Central  PubMed  Google Scholar 

  214. Liu YL, Yang PM, Shun CT, Wu MS, Weng JR, Chen CC (2010) Autophagy potentiates the anti-cancer effects of the histone deacetylase inhibitors in hepatocellular carcinoma. Autophagy 6:1057–1065

    CAS  PubMed  Google Scholar 

  215. Hrzenjak A, Kremser ML, Strohmeier B, Moinfar F, Zatloukal K, Denk H (2008) SAHA induces caspase-independent, autophagic cell death of endometrial stromal sarcoma cells by influencing the mTOR pathway. J Pathol 216:495–504

    CAS  PubMed  Google Scholar 

  216. Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL (2013) Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 9:1509–1526

    CAS  PubMed  Google Scholar 

  217. Shulak L et al (2014) Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-kappaB-dependent autophagy. J Virol 88:2927–2940

    PubMed Central  PubMed  Google Scholar 

  218. Park MA, Reinehr R, Haussinger D, Voelkel-Johnson C, Ogretmen B, Yacoub A, Grant S, Dent P (2010) Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther 9:2220–2231

    CAS  PubMed Central  PubMed  Google Scholar 

  219. Wang L, Du F, Wang X (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133:693–703

    CAS  PubMed  Google Scholar 

  220. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370:455–465

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Degterev A et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    CAS  PubMed  Google Scholar 

  222. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  223. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137:1100–1111

    CAS  PubMed  Google Scholar 

  224. Lai F et al (2013) Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis 4:e655

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Lin Y, Choksi S, Shen HM, Yang QF, Hur GM, Kim YS, Tran JH, Nedospasov SA, Liu ZG (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828

    CAS  PubMed  Google Scholar 

  226. Sakon S et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Ventura JJ, Cogswell P, Flavell RA, Baldwin AS Jr, Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all Zhong laboratory members for suggestions. The author apologizes to all colleagues whose work may not have been cited for space reasons. Thanks Rhea Sumpter, Mary Grace Lin and Tabitha Ting for critical reading of the manuscript. The work in our lab is supported by grants to Q. Z. from the Welch Foundation, the new investigator award from the Ellison Medical foundation, American Cancer Society Research Scholar Grant (RSG-11-274-01-CCG) and NIH R01 (CA133228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhong, Q. Histone deacetylase inhibitors and cell death. Cell. Mol. Life Sci. 71, 3885–3901 (2014). https://doi.org/10.1007/s00018-014-1656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1656-6

Keywords

Navigation