Skip to main content

Advertisement

Log in

Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The clinical use of cisplatin (cis-diamminedichloroplatinum II) is highly limited by its nephrotoxicity. The precise mechanisms involved in cisplatin-induced mitochondrial dysfunction in kidney have not been completely clarified. Therefore, we investigated in vivo the effects of cisplatin on mitochondrial bioenergetics, redox state, and oxidative stress as well as the occurrence of cell death by apoptosis in cisplatin-treated rat kidney. Adult male Wistar rats weighing 200–220 g were divided into two groups. The control group (n = 8) was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml per 100 g body weight), and the cisplatin group (n = 8) was given a single injection of cisplatin (10 mg/kg body weight, i.p.). Animals were sacrificed 72 h after the treatment. The cisplatin group presented acute renal failure characterized by increased plasmatic creatinine and urea levels. Mitochondrial dysfunction was evidenced by the decline in membrane electrochemical potential and the substantial decrease in mitochondrial calcium uptake. The mitochondrial antioxidant defense system was depleted, as shown by decreased GSH and NADPH levels, GSH/GSSG ratio, and increased GSSG level. Moreover, cisplatin induced oxidative damage to mitochondrial lipids, including cardiolipin, and oxidation of mitocondrial proteins, as demonstrated by the significant decrease of sulfhydryl protein concentrations and increased levels of carbonylated proteins. Additionally, aconitase activity, which is essential for mitochondrial function, was also found to be lower in the cisplatin group. Renal cell death via apoptosis was evidenced by the increased caspase-3 activity. Results show the central role of mitochondria and the intensification of apoptosis in cisplatin-induced acute renal failure, highlighting a number of steps that might be targeted to minimize cisplatin-induced nephrotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antunes Greggi LM, Darin JD, Bianchi MD (2000) Protective effects of vitamin C against cisplatin-induced nephrotoxicity and lipid peroxidation in adult rats: a dose-dependent study. Pharmacol Res 41:405–411

    Article  CAS  Google Scholar 

  • Baek SM, Kwon CH, Kim JH, Jung JS, Kim YK (2003) Differencial roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells. J Lab Clin Med 142:178–186

    Article  PubMed  CAS  Google Scholar 

  • Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV (1998) In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int 53:394–401

    Article  PubMed  CAS  Google Scholar 

  • Berry MN, Edwards AM, Barritt GJ (1991) High-yield preparation of isolated hepatocytes from rat liver. In: Burdon RH, Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology. Isolated hepatocytes preparation, properties and applications. Elsevier, Amsterdam, pp 15–58

    Google Scholar 

  • Bowser DN, Petrou S, Panchal RG, Smart ML, Williams DA (2002) Release of mitochondrial Ca+2 via the permeability transition activates endoplasmic reticulum Ca+2 uptake. FASEB J 16:1105–1107

    PubMed  CAS  Google Scholar 

  • Brady HR, Kone BC, Stromski ME, Zeidel ML, Giebisch G, Gullans SR (1990) Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules. Am J Physiol (Renal Fluid Electrolyte Physiol) 258:F1181–F1187

    CAS  Google Scholar 

  • Cardoso SM, Pereira C, Oliveira R (1999) Mitochondrial function is differentially affected upon oxidative stress. Free Radic Biol Med 26:3–13

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Willians GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  • Chang B, Nishikawa M, Sato E, Utsumi K, Inoue M (2002) L-Carnitine inhibits cisplatin-induced injury of the kidney and small intestine. Arch Biochem Biophys 405:55–64

    Article  PubMed  CAS  Google Scholar 

  • Conklin KA (2004) Cancer chemotherapy and antioxidants. J Nutr 134:3201S–3204S

    PubMed  CAS  Google Scholar 

  • Cummings BS, Schnellmann RG (2002) Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 302:8–17

    Article  PubMed  CAS  Google Scholar 

  • Cvitkovic E (1998) Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat Rev 24:265–281

    Article  PubMed  CAS  Google Scholar 

  • Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine-123 as a probe of transmembrane potential in isolated rat-liver mitochondria-spectral and metabolic properties. Biochim Biophys Acta 850:436–448

    Article  PubMed  CAS  Google Scholar 

  • Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S (2005) Role of mitochondria in toxic oxidative stress. Mol Interv 5:94–111

    Article  PubMed  CAS  Google Scholar 

  • Gallet PF, Maftah A, Petit JM, Denis-Gay M, Julien R (1995) Direct cardiolipin assay In yeast using the red fluorescence emission of 10-N-nonyl acridine orange. Eur J Biochem 15:113–119

    Article  Google Scholar 

  • Grattagliano I, Vendemiale G, Sabbá C, Buonamico P, Altomare E (1996) Oxidation of circulating proteins in alcoholics: role of acetaldehyde and xantine oxidase. J Hepatol 25:28–36

    Article  PubMed  CAS  Google Scholar 

  • Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  Google Scholar 

  • Hannemann J, Duwe J, Baumann K (1991) Iron and ascorbic acid-induced lipid peroxidation in renal microsomes isolated from rats treated with platinum compounds. Cancer Chemother Pharmacol 28:427–433

    Article  PubMed  CAS  Google Scholar 

  • Hauff KD, Hatch GM (2006) Cardiolipin metabolism and Barth Syndrome. Prog Lipid Res 45:91–101

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg MJ (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. Biol Chem 269:1940–1944

    CAS  Google Scholar 

  • Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB (1995) Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270:1842–1845

    Article  PubMed  CAS  Google Scholar 

  • Kadikoylu G, Bolaman Z, Demir S, Balkaya M, Akalin N, Enli Y (2004) The effects of desferrioxamine on cisplatin-induced lipid peroxidation and the activities of antioxidant enzymes in rat kidneys. Hum Exp Toxicol 23:29–34

    Article  PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurina YY, Bayir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova AA, Jiang J (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28

    Article  PubMed  CAS  Google Scholar 

  • Kaushal GP, Kaushal V, Hong X, Shah SV (2001) Role and regulation of caspases in cisplatin induced injury to renal tubular epithelial cells. Kidney Int 60:1726–1736

    Article  PubMed  CAS  Google Scholar 

  • Li-Ping X, Skrezek C, Wand H, Reibe F (2000) Mitochondrial dysfunction at the early estage of cisplatin-induced acute renal failure in rats. J Zhejiang Univ Sci 1:91–96

    Article  Google Scholar 

  • Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26

    Article  PubMed  CAS  Google Scholar 

  • Lund BO, Miller DM, Woods JS (1993) Studies on Hg (II)- induced H2O2 formation and oxidative stress in vivo and in vitro in rat kidney mitochondria. Biochem Pharmacol 45:2017–2024

    Article  PubMed  CAS  Google Scholar 

  • Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116

    Article  PubMed  CAS  Google Scholar 

  • Meyer AJ, Hell Rd (2005) Glutathione homeostasis and redox-regulation by sulfhydryl groups. Photosynth Res 86:435–457

    Article  PubMed  CAS  Google Scholar 

  • Park SA, Park HJ, Lee BI, Ahn YH, Kim SU, Choi KS (2001) Bcl-2 blocks cisplatin-induced apoptosis by suppression of ERK-mediated p53 accumulation in B104 cells. Brain Res Mol Brain Res 93:18–26

    Article  PubMed  CAS  Google Scholar 

  • Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  PubMed  CAS  Google Scholar 

  • Pedersen PL, Grenawalt JW, Reynafarje B, Hullihen J, Decker GL, Soper JW, Bustamente E (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver-derived tissues. Methods Cell Biol 20:411–481

    Article  PubMed  CAS  Google Scholar 

  • Petit JM, Maftah A, Ratinaud MH, Julien R (1992) 10-N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur J Biochem 209:267–273

    Article  PubMed  CAS  Google Scholar 

  • Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB J 17:2202–2208

    Article  PubMed  CAS  Google Scholar 

  • Sadzuka Y, Shoji T, Takino Y (1992) Mechanism of the increase in lipid peroxide induced by cisplatin in the kidneys of rats. Toxicol Lett 62:293–300

    Article  PubMed  CAS  Google Scholar 

  • Santos AC, Uyemura SA, Santos NA, Mingatto FE, Curti C (1997) Hg(II)-induced renal cytotoxicity: in vitro and in vivo implications for the bioenergetic and oxidative status of mitochondria. Mol Cell Biochem 177:53–59

    Article  PubMed  CAS  Google Scholar 

  • Scarpa A (1979) Measurements of cation transport with metallochromic indicators. In: Fleisher S, Packer L (eds) Methods in enzimology. Academic, New York, pp 301–352

    Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347

    Article  PubMed  CAS  Google Scholar 

  • Singh G (1989) A possible mechanism of cisplatin–induced nephrotoxicity. Toxicology 58:71–80

    Article  PubMed  CAS  Google Scholar 

  • Somani SM, Husain K, Whitworth C, Trammell GL, Malafa M, Rybak LP (2000) Dose-dependent protection by lipoic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Pharmacol Toxicol 86:234–241

    Article  PubMed  CAS  Google Scholar 

  • Souid AK, Tacka KA, Galvan KA, Penefsky HS (2003) Immediate effects of anticancer drugs on mitochondrial oxygen consumption. Biochem Pharmacol 66:977–987

    Article  PubMed  CAS  Google Scholar 

  • Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R (2002) Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol 451:203–208

    Article  PubMed  CAS  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  PubMed  CAS  Google Scholar 

  • Tuma R (2001) The two faces of oxygen. Sci Aging Knowledge Environ 2001:1–5

    Google Scholar 

  • Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Song JH, Song DK, Ang J, Hao C (2006) Role of death receptor and mitochondrial pathways in conventional chemotherapy drug induction of apoptosis. Cell Signal 18:1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Zhang JG, Lindup WE (1994) Cisplatin nephrotoxicity: decreases in mitochondrial protein sulphydryl concentration and calcium uptake by mitochondria from rat renal cortical slices. Biochem Pharmacol 47:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Zhang JG, Lindup WE (1996) Role of calcium in cisplatin-induced cell toxicity in rat renal cortical slices. Toxicology In Vitro 10:205–209

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277:43553–43556

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Sean R, Graziano JH (1998) Manganese inhibits mitochondrial aconitase: a mechanism of manganese neurotoxicity. Brain Res 799:334–342

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, N.A.G., Catão, C.S., Martins, N.M. et al. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol 81, 495–504 (2007). https://doi.org/10.1007/s00204-006-0173-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-006-0173-2

Keywords

Navigation