Skip to main content

Advertisement

Log in

Structure and function of mammalian aldehyde oxidases

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adachi M, Itoh K, Masubuchi A, Watanabe N, Tanaka Y (2007) Construction and expression of mutant cDNAs responsible for genetic polymorphism in aldehyde oxidase in Donryu strain rats. J Biochem Mol Biol 40(6):1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Alfaro JF, Joswig-Jones CA, Ouyang W, Nichols J, Crouch GJ, Jones JP (2009) Purification and mechanism of human aldehyde oxidase expressed in Escherichia coli. Drug Metab Dispos 37(12):2393–2398. doi:10.1124/dmd.109.029520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asai R, Nishino T, Matsumura T, Okamoto K, Igarashi K, Pai EF (2007) Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase. J Biochem 141(4):525–534. doi:10.1093/jb/mvm054

    Article  CAS  PubMed  Google Scholar 

  • Barr JT, Choughule K, Jones JP (2014) Enzyme kinetics, inhibition, and regioselectivity of aldehyde oxidase. Methods Mol Biol 1113:167–186. doi:10.1007/978-1-62703-758-7_9

    Article  CAS  PubMed  Google Scholar 

  • Beedham C, Bruce SE, Critchley DJ, al-Tayib Y, Rance DJ (1987) Species variation in hepatic aldehyde oxidase activity. Eur J Drug Metab Pharmacokinet 12(4):307–310

    Article  CAS  PubMed  Google Scholar 

  • Beedham C, Padwick DJ, al-Tayib Y, Smith JA (1989) Diurnal variation and melatonin induction of hepatic molybdenum hydroxylase activity in the guinea-pig. Biochem Pharmacol 38(9):1459–1464

    Article  CAS  PubMed  Google Scholar 

  • Beedham C, Bruce SE, Critchley DJ, Rance DJ (1990) 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases. Biochem Pharmacol 39(7):1213–1221

    Article  CAS  PubMed  Google Scholar 

  • Beedham C, al-Tayib Y, Smith JA (1992) Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials. Drug Metab Dispos 20(6):889–895

    CAS  PubMed  Google Scholar 

  • Bendotti C, Prosperini E, Kurosaki M, Garattini E, Terao M (1997) Selective localization of mouse aldehyde oxidase mRNA in the choroid plexus and motor neurons. NeuroReport 8(9–10):2343–2349

    Article  CAS  PubMed  Google Scholar 

  • Berger R, Mezey E, Clancy KP et al (1995) Analysis of aldehyde oxidase and xanthine dehydrogenase/oxidase as possible candidate genes for autosomal recessive familial amyotrophic lateral sclerosis. Somat Cell Mol Genet 21(2):121–131

    Article  CAS  PubMed  Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276(44):40381–40384. doi:10.1074/jbc.C100472200

    Article  CAS  PubMed  Google Scholar 

  • Buzzell GR (1996) The Harderian gland: perspectives. Microsc Res Tech 34(1):2–5. doi:10.1002/(SICI)1097-0029(19960501)34:1<2:AID-JEMT2>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  • Carpani G, Racchi M, Ghezzi P, Terao M, Garattini E (1990) Purification and characterization of mouse liver xanthine oxidase. Arch Biochem Biophys 279(2):237–241

    Article  CAS  PubMed  Google Scholar 

  • Castro GD, Delgado de Layno AM, Costantini MH, Castro JA (2001) Cytosolic xanthine oxidoreductase mediated bioactivation of ethanol to acetaldehyde and free radicals in rat breast tissue. Its potential role in alcohol-promoted mammary cancer. Toxicology 160(1–3):11–18

    Article  CAS  PubMed  Google Scholar 

  • Cazzaniga G, Terao M, Lo Schiavo P et al (1994) Chromosomal mapping, isolation, and characterization of the mouse xanthine dehydrogenase gene. Genomics 23(2):390–402. doi:10.1006/geno.1994.1515

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira NM, Coelho C, Bras NF et al (2015) Insights into the structural determinants of substrate specificity and activity in mouse aldehyde oxidases. J Biol Inorg Chem 20(2):209–217. doi:10.1007/s00775-014-1198-2

    Article  CAS  PubMed  Google Scholar 

  • Chladek J, Martinkova J, Sispera L (1997) An in vitro study on methotrexate hydroxylation in rat and human liver. Physiol Res 46(5):371–379

    CAS  PubMed  Google Scholar 

  • Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X (2012) Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 35(1):15–36. doi:10.1111/j.1365-2036.2011.04905.x

    Article  CAS  PubMed  Google Scholar 

  • Choughule KV, Barr JT, Jones JP (2013) Evaluation of rhesus monkey and guinea pig hepatic cytosol fractions as models for human aldehyde oxidase. Drug Metab Dispos 41(10):1852–1858. doi:10.1124/dmd.113.052985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choughule KV, Joswig-Jones CA, Jones JP (2015) Interspecies differences in the metabolism of methotrexate: an insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 96(3):288–295. doi:10.1016/j.bcp.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  • Coelho C, Mahro M, Trincao J et al (2012) The first mammalian aldehyde oxidase crystal structure: insights into substrate specificity. J Biol Chem 287(48):40690–40702. doi:10.1074/jbc.M112.390419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho C, Foti A, Hartmann T, Santos-Silva T, Leimkuhler S, Romao MJ (2015) Structural insights into xenobiotic and inhibitor binding to human aldehyde oxidase. Nat Chem Biol 11(10):779–783. doi:10.1038/nchembio.1895

    Article  CAS  PubMed  Google Scholar 

  • Cohen HJ, Fridovich I (1971a) Hepatic sulfite oxidase. Purification and properties. J Biol Chem 246(2):359–366

    CAS  PubMed  Google Scholar 

  • Cohen HJ, Fridovich I (1971b) Hepatic sulfite oxidase. The nature and function of the heme prosthetic groups. J Biol Chem 246(2):367–373

    CAS  PubMed  Google Scholar 

  • Coughlan MP, Rajagopalan KV (1980) The kinetic mechanism of xanthine dehydrogenase and related enzymes. Eur J Biochem 105(1):81–84

    Article  CAS  PubMed  Google Scholar 

  • Cypher JJ, Tedesco JL, Courtright JB, Kumaran AK (1982) Tissue-specific and substrate-specific detection of aldehyde and pyridoxal oxidase in larval and imaginal tissues of Drosophila melanogaster. Biochem Genet 20(3–4):315–332

    Article  CAS  PubMed  Google Scholar 

  • Dalvie D, Xiang C, Kang P, Zhou S (2013) Interspecies variation in the metabolism of zoniporide by aldehyde oxidase. Xenobiotica 43(5):399–408. doi:10.3109/00498254.2012.727499

    Article  CAS  PubMed  Google Scholar 

  • Diamond S, Boer J, Maduskuie TP Jr, Falahatpisheh N, Li Y, Yeleswaram S (2010) Species-specific metabolism of SGX523 by aldehyde oxidase and the toxicological implications. Drug Metab Dispos 38(8):1277–1285. doi:10.1124/dmd.110.032375

    Article  CAS  PubMed  Google Scholar 

  • Dick RA, Kanne DB, Casida JE (2006) Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol 19(1):38–43. doi:10.1021/tx050230x

    Article  CAS  PubMed  Google Scholar 

  • Ding TL, Benet LZ (1979) Comparative bioavailability and pharmacokinetic studies of azathioprine and 6-mercaptopurine in the rhesus monkey. Drug Metab Dispos 7(6):373–377

    CAS  PubMed  Google Scholar 

  • Falciani F, Ghezzi P, Terao M, Cazzaniga G, Garattini E (1992) Interferons induce xanthine dehydrogenase gene expression in L929 cells. Biochem J 285(Pt 3):1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falciani F, Terao M, Goldwurm S et al (1994) Molybdenum(VI) salts convert the xanthine oxidoreductase apoprotein into the active enzyme in mouse L929 fibroblastic cells. Biochem J 298(Pt 1):69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fratelli M, Fisher JN, Paroni G et al (2013) New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: the role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. Eur J Cancer 49(6):1491–1500. doi:10.1016/j.ejca.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  • Fu C, Di L, Han X et al (2013) Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression level and activity relationship. Drug Metab Dispos 41(10):1797–1804. doi:10.1124/dmd.113.053082

    Article  CAS  PubMed  Google Scholar 

  • Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 43(3):374–386. doi:10.3109/03602532.2011.560606

    Article  CAS  PubMed  Google Scholar 

  • Garattini E, Terao M (2012) The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 8(4):487–503. doi:10.1517/17425255.2012.663352

    Article  CAS  PubMed  Google Scholar 

  • Garattini E, Terao M (2013) Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 8(6):641–654. doi:10.1517/17460441.2013.788497

    Article  CAS  PubMed  Google Scholar 

  • Garattini E, Fratelli M, Terao M (2008) Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci 65(7–8):1019–1048. doi:10.1007/s00018-007-7398-y

    Article  CAS  PubMed  Google Scholar 

  • Garattini E, Fratelli M, Terao M (2009) The mammalian aldehyde oxidase gene family. Hum Genomics 4(2):119–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari T, Nouri M, Saei AA, Rashidi MR (2012) Aldehyde and xanthine oxidase activities in tissues of streptozotocin-induced diabetic rats: effects of vitamin E and selenium supplementation. Biol Trace Elem Res 147(1–3):217–225. doi:10.1007/s12011-011-9291-7

    Article  CAS  PubMed  Google Scholar 

  • Graessler J, Fischer S (2007) The dual substrate specificity of aldehyde oxidase 1 for retinal and acetaldehyde and its role in ABCA1 mediated efflux. Horm Metab Res 39(11):775–776. doi:10.1055/s-2007-992126

    Article  CAS  PubMed  Google Scholar 

  • Gruenewald S, Wahl B, Bittner F et al (2008) The fourth molybdenum containing enzyme mARC: cloning and involvement in the activation of N-hydroxylated prodrugs. J Med Chem 51(24):8173–8177. doi:10.1021/jm8010417

    Article  CAS  PubMed  Google Scholar 

  • Hahnewald R, Leimkuhler S, Vilaseca A, Acquaviva-Bourdain C, Lenz U, Reiss J (2006) A novel MOCS2 mutation reveals coordinated expression of the small and large subunit of molybdopterin synthase. Mol Genet Metab 89(3):210–213. doi:10.1016/j.ymgme.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int J Biochem Cell Biol 38(3):313–316. doi:10.1016/j.biocel.2005.08.020

    Article  CAS  PubMed  Google Scholar 

  • Hartmann T, Terao M, Garattini E et al (2012) The impact of single nucleotide polymorphisms on human aldehyde oxidase. Drug Metab Dispos 40(5):856–864. doi:10.1124/dmd.111.043828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havemeyer A, Lang J, Clement B (2011) The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metab Rev 43(4):524–539. doi:10.3109/03602532.2011.608682

    Article  CAS  PubMed  Google Scholar 

  • Heidenreich T, Wollers S, Mendel RR, Bittner F (2005) Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280(6):4213–4218. doi:10.1074/jbc.M411195200

    Article  CAS  PubMed  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96(7):2757–2816

    Article  CAS  PubMed  Google Scholar 

  • Hille R, Sprecher H (1987) On the mechanism of action of xanthine oxidase. Evidence in support of an oxo transfer mechanism in the molybdenum-containing hydroxylases. J Biol Chem 262(23):10914–10917

    CAS  PubMed  Google Scholar 

  • Holmes RS (1979) Genetics, ontogeny, and testosterone inducibility of aldehyde oxidase isozymes in the mouse: evidence for two genetic loci (Aox-I and Aox-2) closely linked on chromosome 1. Biochem Genet 17(5–6):517–527

    Article  CAS  PubMed  Google Scholar 

  • Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K (2013) Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 135(18):7019–7032. doi:10.1021/ja401781t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hover BM, Lilla EA, Yokoyama K (2015a) Mechanistic investigation of cPMP synthase in molybdenum cofactor biosynthesis using an uncleavable substrate analogue. Biochemistry 54(49):7229–7236. doi:10.1021/acs.biochem.5b00857

    Article  CAS  PubMed  Google Scholar 

  • Hover BM, Tonthat NK, Schumacher MA, Yokoyama K (2015b) Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis. Proc Natl Acad Sci USA 112(20):6347–6352. doi:10.1073/pnas.1500697112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu R, Xu C, Shen G et al (2006) Identification of Nrf2-regulated genes induced by chemopreventive isothiocyanate PEITC by oligonucleotide microarray. Life Sci 79(20):1944–1955. doi:10.1016/j.lfs.2006.06.019

    Article  CAS  PubMed  Google Scholar 

  • Huang DY, Ichikawa Y (1994) Two different enzymes are primarily responsible for retinoic acid synthesis in rabbit liver cytosol. Biochem Biophys Res Commun 205(2):1278–1283. doi:10.1006/bbrc.1994.2803

    Article  CAS  PubMed  Google Scholar 

  • Huang DY, Furukawa A, Ichikawa Y (1999) Molecular cloning of retinal oxidase/aldehyde oxidase cDNAs from rabbit and mouse livers and functional expression of recombinant mouse retinal oxidase cDNA in Escherichia coli. Arch Biochem Biophys 364(2):264–272. doi:10.1006/abbi.1999.1129

    Article  CAS  PubMed  Google Scholar 

  • Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400(4):469–486. doi:10.1002/(SICI)1096-9861(19981102)400:4<469:AID-CNE3>3.0.CO;2-8

    Article  CAS  PubMed  Google Scholar 

  • Hutzler JM, Obach RS, Dalvie D, Zientek MA (2013) Strategies for a comprehensive understanding of metabolism by aldehyde oxidase. Expert Opin Drug Metab Toxicol 9(2):153–168. doi:10.1517/17425255.2013.738668

    Article  CAS  PubMed  Google Scholar 

  • Ichida K, Amaya Y, Noda K et al (1993) Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene 133(2):279–284

    Article  CAS  PubMed  Google Scholar 

  • Itoh K, Adachi M, Sato J et al (2009) Effects of selenium deficiency on aldehyde oxidase 1 in rats. Biol Pharm Bull 32(2):190–194

    Article  CAS  PubMed  Google Scholar 

  • Johnson C, Stubley-Beedham C, Stell JG (1984) Elevation of molybdenum hydroxylase levels in rabbit liver after ingestion of phthalazine or its hydroxylated metabolite. Biochem Pharmacol 33(22):3699–3705

    Article  CAS  PubMed  Google Scholar 

  • Kamli MR, Kim J, Pokharel S, Jan AT, Lee EJ, Choi I (2014) Expressional studies of the aldehyde oxidase (AOX1) gene during myogenic differentiation in C2C12 cells. Biochem Biophys Res Commun 450(4):1291–1296. doi:10.1016/j.bbrc.2014.06.126

    Article  CAS  PubMed  Google Scholar 

  • Kinsella TJ, Kunugi KA, Vielhuber KA, McCulloch W, Liu SH, Cheng YC (1994) An in vivo comparison of oral 5-iodo-2′-deoxyuridine and 5-iodo-2-pyrimidinone-2′-deoxyribose toxicity, pharmacokinetics, and DNA incorporation in athymic mouse tissues and the human colon cancer xenograft, HCT-116. Cancer Res 54(10):2695–2700

    CAS  PubMed  Google Scholar 

  • Kinsella TJ, Kunugi KA, Vielhuber KA, Potter DM, Fitzsimmons ME, Collins JM (1998) Preclinical evaluation of 5-iodo-2-pyrimidinone-2′-deoxyribose as a prodrug for 5-iodo-2′-deoxyuridine-mediated radiosensitization in mouse and human tissues. Clin Cancer Res 4(1):99–109

    CAS  PubMed  Google Scholar 

  • Kinsella TJ, Schupp JE, Davis TW et al (2000) Preclinical study of the systemic toxicity and pharmacokinetics of 5-iodo-2-deoxypyrimidinone-2′-deoxyribose as a radiosensitizing prodrug in two, non-rodent animal species: implications for phase I study design. Clin Cancer Res 6(9):3670–3679

    CAS  PubMed  Google Scholar 

  • Kitamura S, Tatsumi K (1984a) Involvement of liver aldehyde oxidase in the reduction of nicotinamide N-oxide. Biochem Biophys Res Commun 120(2):602–606

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Tatsumi K (1984b) Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Biochem Biophys Res Commun 121(3):749–754

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Sugihara K, Nakatani K et al (1999) Variation of hepatic methotrexate 7-hydroxylase activity in animals and humans. IUBMB Life 48(6):607–611. doi:10.1080/713803569

    Article  CAS  PubMed  Google Scholar 

  • Kundu TK, Velayutham M, Zweier JL (2012) Aldehyde oxidase functions as a superoxide generating NADH oxidase: an important redox regulated pathway of cellular oxygen radical formation. Biochemistry 51(13):2930–2939. doi:10.1021/bi3000879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaki M, Demontis S, Barzago MM, Garattini E, Terao M (1999) Molecular cloning of the cDNA coding for mouse aldehyde oxidase: tissue distribution and regulation in vivo by testosterone. Biochem J 341(Pt 1):71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurosaki M, Terao M, Barzago MM et al (2004) The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 279(48):50482–50498. doi:10.1074/jbc.M408734200

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki M, Bolis M, Fratelli M et al (2013) Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression. Cell Mol Life Sci 70(10):1807–1830. doi:10.1007/s00018-012-1229-5

    Article  CAS  PubMed  Google Scholar 

  • Lee HF, Mak BS, Chi CS, Tsai CR, Chen CH, Shu SG (2002) A novel mutation in neonatal isolated sulphite oxidase deficiency. Neuropediatrics 33(4):174–179. doi:10.1055/s-2002-34491

    Article  CAS  PubMed  Google Scholar 

  • Lehrke M, Rump S, Heidenreich T, Wissing J, Mendel RR, Bittner F (2012) Identification of persulfide-binding and disulfide-forming cysteine residues in the NifS-like domain of the molybdenum cofactor sulfurase ABA3 by cysteine-scanning mutagenesis. Biochem J 441(3):823–832. doi:10.1042/BJ20111170

    Article  CAS  PubMed  Google Scholar 

  • Leimkuhler S, Iobbi-Nivol C (2015) Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev. doi:10.1093/femsre/fuv043

    PubMed  Google Scholar 

  • Li H, Cui H, Kundu TK, Alzawahra W, Zweier JL (2008) Nitric oxide production from nitrite occurs primarily in tissues not in the blood: critical role of xanthine oxidase and aldehyde oxidase. J Biol Chem 283(26):17855–17863. doi:10.1074/jbc.M801785200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Ohno T, Igarashi S, Yoshimura T, Yamashiro K, Sakai M (2012) Aldehyde oxidase 1 gene is regulated by Nrf2 pathway. Gene 505(2):374–378. doi:10.1016/j.gene.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  • Mahro M, Coelho C, Trincao J et al (2011) Characterization and crystallization of mouse aldehyde oxidase 3: from mouse liver to Escherichia coli heterologous protein expression. Drug Metab Dispos 39(10):1939–1945. doi:10.1124/dmd.111.040873

    Article  CAS  PubMed  Google Scholar 

  • Mahro M, Bras NF, Cerqueira NM et al (2013) Identification of crucial amino acids in mouse aldehyde oxidase 3 that determine substrate specificity. PLoS ONE 8(12):e82285. doi:10.1371/journal.pone.0082285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maia LB, Pereira V, Mira L, Moura JJ (2015) Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo. Biochemistry 54(3):685–710. doi:10.1021/bi500987w

    Article  CAS  PubMed  Google Scholar 

  • Manevski N, Balavenkatraman KK, Bertschi B et al (2014) Aldehyde oxidase activity in fresh human skin. Drug Metab Dispos 42(12):2049–2057. doi:10.1124/dmd.114.060368

    Article  PubMed  CAS  Google Scholar 

  • Massey V, Edmondson D (1970) On the mechanism of inactivation of xanthine oxidase by cyanide. J Biol Chem 245(24):6595–6598

    CAS  PubMed  Google Scholar 

  • Matthies A, Nimtz M, Leimkuhler S (2005) Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry. Biochemistry 44(21):7912–7920. doi:10.1021/bi0503448

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR (2013) The molybdenum cofactor. J Biol Chem 288(19):13165–13172. doi:10.1074/jbc.R113.455311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendel RR, Kruse T (2012) Cell biology of molybdenum in plants and humans. Biochim Biophys Acta 9:1568–1579. doi:10.1016/j.bbamcr.2012.02.007

    Article  CAS  Google Scholar 

  • Mendel RR, Leimkuhler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20(2):337–347. doi:10.1007/s00775-014-1173-y

    Article  CAS  PubMed  Google Scholar 

  • Mira L, Maia L, Barreira L, Manso CF (1995) Evidence for free radical generation due to NADH oxidation by aldehyde oxidase during ethanol metabolism. Arch Biochem Biophys 318(1):53–58. doi:10.1006/abbi.1995.1203

    Article  CAS  PubMed  Google Scholar 

  • Molotkov A, Fan X, Deltour L et al (2002) Stimulation of retinoic acid production and growth by ubiquitously expressed alcohol dehydrogenase Adh3. Proc Natl Acad Sci USA 99(8):5337–5342. doi:10.1073/pnas.08209329999/8/5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriwaki Y, Yamamoto T, Yamakita J, Takahashi S, Higashino K (1998a) Comparative localization of aldehyde oxidase and xanthine oxidoreductase activity in rat tissues. Histochem J 30(2):69–74

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki Y, Yamamoto T, Yamakita J, Takahashi S, Tsutsumi Z, Higashino K (1998b) Zonal distribution of allopurinol-oxidizing enzymes in rat liver. Adv Exp Med Biol 431:47–50

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki Y, Yamamoto T, Takahashi S, Tsutsumi Z, Hada T (2001) Widespread cellular distribution of aldehyde oxidase in human tissues found by immunohistochemistry staining. Histol Histopathol 16(3):745–753

    CAS  PubMed  Google Scholar 

  • Neumeier M, Hellerbrand C, Gabele E et al (2006) Adiponectin and its receptors in rodent models of fatty liver disease and liver cirrhosis. World J Gastroenterol 12(34):5490–5494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21(4):444–448. doi:10.1038/7788

    Article  CAS  PubMed  Google Scholar 

  • Nishino T (1994) The conversion of xanthine dehydrogenase to xanthine oxidase and the role of the enzyme in reperfusion injury. J Biochem 116(1):1–6

    CAS  PubMed  Google Scholar 

  • Nishino T, Okamoto K, Eger BT, Pai EF (2008) Mammalian xanthine oxidoreductase—mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275(13):3278–3289. doi:10.1111/j.1742-4658.2008.06489.x

    Article  CAS  PubMed  Google Scholar 

  • Obach RS, Walsky RL (2005) Drugs that inhibit oxidation reactions catalyzed by aldehyde oxidase do not inhibit the reductive metabolism of ziprasidone to its major metabolite, S-methyldihydroziprasidone: an in vitro study. J Clin Psychopharmacol 25(6):605–608

    Article  CAS  PubMed  Google Scholar 

  • Obach RS, Prakash C, Kamel AM (2012) Reduction and methylation of ziprasidone by glutathione, aldehyde oxidase, and thiol S-methyltransferase in humans: an in vitro study. Xenobiotica 42(11):1049–1057. doi:10.3109/00498254.2012.683203

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo M, Sakiyama S, Fujimura S (1983a) Increase of nicotinamide methyltransferase and N1-methyl-nicotinamide oxidase activities in the livers of the rats administered alkylating agents. Cancer Lett 21(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Ohkubo M, Sakiyama S, Fujimura S (1983b) Purification and characterization of N1-methylnicotinamide oxidases I and II separated from rat liver. Arch Biochem Biophys 221(2):534–542

    Article  CAS  PubMed  Google Scholar 

  • Ott G, Havemeyer A, Clement B (2015) The mammalian molybdenum enzymes of mARC. J Biol Inorg Chem 20(2):265–275. doi:10.1007/s00775-014-1216-4

    Article  CAS  PubMed  Google Scholar 

  • Payne AP (1994) The harderian gland: a tercentennial review. J Anat 185(Pt 1):1–49

    PubMed  PubMed Central  Google Scholar 

  • Pelikant-Malecka I, Sielicka A, Kaniewska E, Smolenski RT, Slominska EM (2015) Endothelial toxicity of unusual nucleotide metabolites. Pharmacol Rep 67(4):818–822. doi:10.1016/j.pharep.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  • Pryde DC, Tran TD, Jones P et al (2012) Medicinal chemistry approaches to avoid aldehyde oxidase metabolism. Bioorg Med Chem Lett 22(8):2856–2860. doi:10.1016/j.bmcl.2012.02.069

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267(15):10199–10202

    CAS  PubMed  Google Scholar 

  • Rajapakshe A, Tollin G, Enemark JH (2012) Kinetic and thermodynamic effects of mutations of human sulfite oxidase. Chem Biodivers 9(9):1621–1634. doi:10.1002/cbdv.201200010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rani Basu L, Mazumdar K, Dutta NK, Karak P, Dastidar SG (2005) Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol Res 160(1):95–100

    Article  PubMed  CAS  Google Scholar 

  • Reiss J, Cohen N, Dorche C et al (1998) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20(1):51–53. doi:10.1038/1706

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Dorche C, Stallmeyer B, Mendel RR, Cohen N, Zabot MT (1999) Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. Am J Hum Genet 64(3):706–711. doi:10.1086/302296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera SP, Choi HH, Chapman B et al (2005) Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes. Toxicology 207(3):401–409. doi:10.1016/j.tox.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  • Rooseboom M, Commandeur JN, Vermeulen NP (2004) Enzyme-catalyzed activation of anticancer prodrugs. Pharmacol Rev 56(1):53–102. doi:10.1124/pr.56.1.3

    Article  CAS  PubMed  Google Scholar 

  • Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S (2015) Significance of aldehyde oxidase during drug development: effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 30(1):52–63. doi:10.1016/j.dmpk.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  • Schumann S, Terao M, Garattini E et al (2009) Site directed mutagenesis of amino acid residues at the active site of mouse aldehyde oxidase AOX1. PLoS ONE 4(4):e5348. doi:10.1371/journal.pone.0005348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwartz R, Kjeldgaard NO (1951) The enzymic oxidation of pyridoxal by liver aldehyde oxidase. Biochem J 48(3):333–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647. doi:10.1146/annurev.arplant.57.032905.105437

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460(7257):839–847. doi:10.1038/nature08302

    Article  CAS  PubMed  Google Scholar 

  • Shaw S, Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J 268(3):579–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shintani Y, Maruoka S, Gon Y et al (2015) Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates airway epithelial barrier integrity. Allergol Int 64(Suppl):S54–S63. doi:10.1016/j.alit.2015.06.004

    Article  PubMed  Google Scholar 

  • Sigruener A, Buechler C, Orso E et al (2007) Human aldehyde oxidase 1 interacts with ATP-binding cassette transporter-1 and modulates its activity in hepatocytes. Horm Metab Res 39(11):781–789. doi:10.1055/s-2007-992129

    Article  CAS  PubMed  Google Scholar 

  • Stallmeyer B, Drugeon G, Reiss J, Haenni AL, Mendel RR (1999) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64(3):698–705. doi:10.1086/302295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanulovic M, Chaykin S (1971) Aldehyde oxidase: catalysis of the oxidation of N 1-methylnicotinamide and pyridoxal. Arch Biochem Biophys 145(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Stell JG, Wheelhouse RT, Wright CW (2012) Metabolism of cryptolepine and 2-fluorocryptolepine by aldehyde oxidase. J Pharm Pharmacol 64(2):237–243. doi:10.1111/j.2042-7158.2011.01408.x

    Article  CAS  PubMed  Google Scholar 

  • Stoddart AM, Levine WG (1992) Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol 43(10):2227–2235

    Article  CAS  PubMed  Google Scholar 

  • Stubley C, Stell JG, Mathieson DW (1979) The oxidation of azaheterocycles with mammalian liver aldehyde oxidase. Xenobiotica 9(8):475–484. doi:10.3109/00498257909087261

    Article  CAS  PubMed  Google Scholar 

  • Sugihara K, Kitamura S, Tatsumi K, Asahara T, Dohi K (1997) Differences in aldehyde oxidase activity in cytosolic preparations of human and monkey liver. Biochem Mol Biol Int 41(6):1153–1160

    CAS  PubMed  Google Scholar 

  • Swenson TL, Casida JE (2013) Aldehyde oxidase importance in vivo in xenobiotic metabolism: imidacloprid nitroreduction in mice. Toxicol Sci 133(1):22–28. doi:10.1093/toxsci/kft066

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi K, Kitamura S, Narai N (1986) Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Cancer Res 46(3):1089–1093

    CAS  PubMed  Google Scholar 

  • Tayama Y, Miyake K, Sugihara K et al (2007a) Developmental changes of aldehyde oxidase activity in young Japanese children. Clin Pharmacol Ther 81(4):567–572. doi:10.1038/sj.clpt.6100078

    Article  CAS  PubMed  Google Scholar 

  • Tayama Y, Moriyasu A, Sugihara K, Ohta S, Kitamura S (2007b) Developmental changes of aldehyde oxidase in postnatal rat liver. Drug Metab Pharmacokinet 22(2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Tayama Y, Sugihara K, Sanoh S et al (2011) Effect of tea beverages on aldehyde oxidase activity. Drug Metab Pharmacokinet 26(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Tayama Y, Sugihara K, Sanoh S, Miyake K, Kitamura S, Ohta S (2012) Developmental changes of aldehyde oxidase activity and protein expression in human liver cytosol. Drug Metab Pharmacokinet 27(5):543–547

    Article  CAS  PubMed  Google Scholar 

  • Terao M, Cazzaniga G, Ghezzi P et al (1992) Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochem J 283(Pt 3):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terao M, Kurosaki M, Saltini G et al (2000) Cloning of the cDNAs coding for two novel molybdo-flavoproteins showing high similarity with aldehyde oxidase and xanthine oxidoreductase. J Biol Chem 275(39):30690–30700. doi:10.1074/jbc.M005355200

    Article  CAS  PubMed  Google Scholar 

  • Terao M, Kurosaki M, Marini M et al (2001) Purification of the aldehyde oxidase homolog 1 (AOH1) protein and cloning of the AOH1 and aldehyde oxidase homolog 2 (AOH2) genes. Identification of a novel molybdo-flavoprotein gene cluster on mouse chromosome 1. J Biol Chem 276(49):46347–46363. doi:10.1074/jbc.M105744200

    Article  CAS  PubMed  Google Scholar 

  • Terao M, Kurosaki M, Barzago MM et al (2006) Avian and canine aldehyde oxidases. Novel insights into the biology and evolution of molybdo-flavoenzymes. J Biol Chem 281(28):19748–19761. doi:10.1074/jbc.M600850200

    Article  CAS  PubMed  Google Scholar 

  • Terao M, Kurosaki M, Barzago MM et al (2009) Role of the molybdoflavoenzyme aldehyde oxidase homolog 2 in the biosynthesis of retinoic acid: generation and characterization of a knockout mouse. Mol Cell Biol 29(2):357–377. doi:10.1128/MCB.01385-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita S, Tsujita M, Ichikawa Y (1993) Retinal oxidase is identical to aldehyde oxidase. FEBS Lett 336(2):272–274

    Article  CAS  PubMed  Google Scholar 

  • Tsujita M, Tomita S, Miura S, Ichikawa Y (1994) Characteristic properties of retinal oxidase (retinoic acid synthase) from rabbit hepatocytes. Biochim Biophys Acta 1204(1):108–116

    Article  CAS  PubMed  Google Scholar 

  • Ueda O, Kitamura S, Ohashi K, Sugihara K, Ohta S (2003) Xanthine oxidase-catalyzed metabolism of 2-nitrofluorene, a carcinogenic air pollutant, in rat skin. Drug Metab Dispos 31(4):367–372

    Article  CAS  PubMed  Google Scholar 

  • Ueda O, Sugihara K, Ohta S, Kitamura S (2005) Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Drug Metab Dispos 33(9):1312–1318. doi:10.1124/dmd.105.005306

    Article  CAS  PubMed  Google Scholar 

  • Ventura SM, Dachtler SL (1980) Development and maturation of aldehyde oxidase levels in fetal hepatic tissue of C57BL/6J mice. Enzyme 25(4):213–219

    CAS  PubMed  Google Scholar 

  • Ventura SM, Dachtler SL (1981) Effects of sex hormones on hepatic aldehyde oxidase activity in C57BL/6J mice. Horm Res 14(4):250–259

    Article  CAS  PubMed  Google Scholar 

  • Vila R, Kurosaki M, Barzago MM et al (2004) Regulation and biochemistry of mouse molybdo-flavoenzymes. The DBA/2 mouse is selectively deficient in the expression of aldehyde oxidase homologues 1 and 2 and represents a unique source for the purification and characterization of aldehyde oxidase. J Biol Chem 279(10):8668–8683. doi:10.1074/jbc.M308137200

    Article  CAS  PubMed  Google Scholar 

  • Wahl RC, Rajagopalan KV (1982) Evidence for the inorganic nature of the cyanolyzable sulfur of molybdenum hydroxylases. J Biol Chem 257(3):1354–1359

    CAS  PubMed  Google Scholar 

  • Weigert J, Neumeier M, Bauer S et al (2008) Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 582(19):2965–2972. doi:10.1016/j.febslet.2008.07.034

    Article  CAS  PubMed  Google Scholar 

  • Wollers S, Heidenreich T, Zarepour M et al (2008) Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 283(15):9642–9650. doi:10.1074/jbc.M708549200

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141(4):513–524

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara S, Tatsumi K (1985) Guinea pig liver aldehyde oxidase as a sulfoxide reductase: its purification and characterization. Arch Biochem Biophys 242(1):213–224

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara S, Tatsumi K (1997) Purification and characterization of hepatic aldehyde oxidase in male and female mice. Arch Biochem Biophys 338(1):29–34. doi:10.1006/abbi.1996.9774

    Article  CAS  PubMed  Google Scholar 

  • Zientek MA, Youdim K (2015) Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 43(1):163–181. doi:10.1124/dmd.114.058750

    Article  PubMed  CAS  Google Scholar 

  • Ziouzenkova O, Orasanu G, Sharlach M et al (2007) Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med 13(6):695–702. doi:10.1038/nm1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The financial support granted by the Fondazione Italo Monzino and the Associazione Italiana per la Ricerca contro il Cancro (AIRC) to Enrico Garattini was fundamental for the extension of this review article. This work was also financially supported by the Deutsche Forschungsgemeinschaft (DFG) grant LE1171/8-1 to Silke Leimkühler and by. Fundação para a Ciência e Tecnologia through projects UID/Multi/04378/2013, PTDC/BBB-BEP/1185/2014, EXCL/QEQ-COM/0394/2012, PTDC/BIA-PRO/118377/2010 (M.J.R., T.S.-S., C.C.), SFRH/BPD/84581/2012 (C.C.) and DAAD-441.00 (M.J.R., T.S.-S., S.L.). We also thank the I02 staff of the Diamond Light Source (DLS), the X06DA-PXIII staff from the Swiss Light Source (SLS) and the staff from ID14-1, ID29-1, and ID23-1 from the European Synchrotron Radiation Facility (ESRF). We would also like to acknowledge the help of Mr. Felice Deceglie and Mr. Alessandro Soave for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Garattini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terao, M., Romão, M.J., Leimkühler, S. et al. Structure and function of mammalian aldehyde oxidases. Arch Toxicol 90, 753–780 (2016). https://doi.org/10.1007/s00204-016-1683-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1683-1

Keywords

Navigation