Skip to main content
Log in

Brain serotonin transporter in human methamphetamine users

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Research on methamphetamine (MA) toxicity primarily focuses on the possibility that some of the behavioural problems in human MA users might be caused by damage to brain dopamine neurones. However, animal data also indicate that MA can damage brain serotonin neurones, and it has been suggested that cognitive problems and aggression in MA users might be explained by serotonergic damage. As information on the brain serotonin system in human MA users is fragmentary, our objective was to determine whether protein levels of serotonin transporter (SERT), a key marker of serotonin neurones, are decreased in brain of chronic MA users.

Methods

SERT immunoreactivity was measured using an immunoblotting procedure in autopsied brain of 16 chronic MA users testing positive for the drug in blood and brain and matched controls.

Results

SERT levels were non-significantly decreased (−14% to −33%) in caudate, putamen and thalamus (normal in hippocampus), and, unlike the robust striatal dopamine reduction, there was marked overlap between control and MA user ranges. Concentrations of SERT were significantly decreased (−23% to −39%) in orbitofrontal and occipital cortices (normal in frontopolar and temporal cortices).

Conclusions

Our data suggest that MA might modestly damage brain serotonin neurones and/or inhibit SERT protein expression, with cerebral cortex being more affected than sub-cortical regions. The SERT reduction in orbitofrontal cortex complements other data suggesting involvement of this area in MA-related behaviour. Decreased brain SERT could also be related to the clinical finding that treatment with a selective serotonin re-uptake inhibitor might increase relapse to MA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albin RL, Koeppe RA, Bohnen NI, Wernette K, Kilbourn MA, Frey KA (2008) Spared caudal brainstem SERT binding in early Parkinson’s disease. J Cereb Blood Flow Metab 28:441–444

    Article  PubMed  CAS  Google Scholar 

  • Ando K, Johanson CE, Seiden LS, Schuster CR (1985) Sensitivity changes to dopaminergic agents in fine motor control of rhesus monkeys after repeated methamphetamine administration. Pharmacol Biochem Behav 22:737–743

    Article  PubMed  CAS  Google Scholar 

  • Axt KJ, Molliver ME (1991) Immunocytochemical evidence for methamphetamine-induced serotonergic axon loss in the rat brain. Synapse 9:302–313

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Rusjan P, Houle S, Wilkins D, Tong J, Selby P, Guttman M, Saint-Cyr JA, Wilson AA, Kish SJ (2008) Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: is VMAT2 a stable dopamine neuron biomarker? J Neurosci 28:9850–9856

    Google Scholar 

  • Buchert R, Thiele F, Thomasius R, Wilke F, Petersen K, Brenner W, Mester J, Spies L, Clausen M (2007) Ecstasy-induced reduction of the availability of the brain serotonin transporter as revealed by [11C](+)McN5652-PET and the multi-linear reference tissue model: loss of transporters or artifact of tracer kinetic modelling? J Psychopharmacol 21:628–634

    Article  PubMed  CAS  Google Scholar 

  • Chou YH, Huang WS, Su TP, Lu RB, Wan FJ, Fu YK (2007) Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: A SPECT study. Eur Neuropsychopharmacol 17:46–52

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Ersche KD, Fletcher PC, Lewis SJ, Clark L, Stocks-Gee G, London M, Deakin JB, Robbins TW, Sahakian BJ (2005) Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology (Berl) 180:612–623

    Article  CAS  Google Scholar 

  • Finnegan KT, Ricaurte G, Seiden LS, Schuster CR (1982) Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine. Psychopharmacology (Berl) 77:43–52

    Article  CAS  Google Scholar 

  • Fitzmaurice PS, Tong J, Yazdanpanah M, Liu PP, Kalasinsky KS, Kish SJ (2006) Levels of 4-hydroxynonenal and malondialdehyde are increased in brain of human chronic users of methamphetamine. J Pharmacol Exp Ther 319:703–709

    Article  PubMed  CAS  Google Scholar 

  • Fletcher PJ, Korth KM, Chambers JW (1999) Depletion of brain serotonin following intra-raphe injections of 5,7-dihydroxytryptamine does not alter d-amphetamine self-administration across different schedule and access conditions. Psychopharmacology (Berl) 146:185–193

    Article  CAS  Google Scholar 

  • Frankle WG, Huang Y, Hwang DR, Talbot PS, Slifstein M, Van Heertum R, Abi-Dargham A, Laruelle M (2004) Comparative evaluation of serotonin transporter radioligands 11C-DASB and 11C-McN 5652 in healthy humans. J Nucl Med 45:682–694

    PubMed  CAS  Google Scholar 

  • Frankle WG, Lombardo I, New AS, Goodman M, Talbot PS, Huang Y, Hwang DR, Slifstein M, Curry S, Abi-Dargham A, Laruelle M, Siever LJ (2005) Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry 162:915–923

    Article  PubMed  Google Scholar 

  • Guttman M, Boileau I, Warsh J, Saint-Cyr JA, Ginovart N, McCluskey T, Houle S, Wilson A, Mundo E, Rusjan P, Meyer J, Kish SJ (2007) Brain serotonin transporter binding in non-depressed patients with Parkinson’s disease. Eur J Neurol 14:523–528

    Article  PubMed  CAS  Google Scholar 

  • Haughey HM, Fleckenstein AE, Metzger RR, Hanson GR (2000) The effects of methamphetamine on serotonin transporter activity: role of dopamine and hyperthermia. J Neurochem 75:1608–1617

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Fletcher PJ (2003) Serotonin and drug reward: focus on 5-HT2C receptors. Eur J Pharmacol 480:151–162

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Matsuo T, Shimamoto K (1962) Effects of methamphetamine and cocaine on the depletion of catecholamine of the brain, heart and adrenal gland in rabbit by reserpine. Jpn J Pharmacol 12:48–56

    Article  CAS  Google Scholar 

  • Johanson CE, Frey KA, Lundahl LH, Keenan P, Lockhart N, Roll J, Galloway GP, Koeppe RA, Kilbourn MR, Robbins T, Schuster CR (2006) Cognitive function and nigrostriatal markers in abstinent methamphetamine abusers. Psychopharmacology (Berl) 185:327–338

    Article  CAS  Google Scholar 

  • Johnson M, Stone DM, Hanson GR, Gibb JW (1987) Role of the dopaminergic nigrostriatal pathway in methamphetamine-induced depression of the neostriatal serotonergic system. Eur J Pharmacol 135:231–234

    Article  PubMed  CAS  Google Scholar 

  • Kalasinsky KS, Bosy TZ, Schmunk GA, Reiber G, Anthony RM, Furukawa Y, Guttman M, Kish SJ (2001) Regional distribution of methamphetamine in autopsied brain of chronic human methamphetamine users. Forensic Sci Int 116:163–169

    Article  PubMed  CAS  Google Scholar 

  • Kerenyi L, Ricaurte GA, Schretlen DJ, McCann U, Varga J, Mathews WB, Ravert HT, Dannals RF, Hilton J, Wong DF, Szabo Z (2003) Positron emission tomography of striatal serotonin transporters in Parkinson disease. Arch Neurol 60:1223–1229

    Article  PubMed  Google Scholar 

  • Kish SJ (2002) How strong is the evidence that brain serotonin neurons are damaged in human users of ecstasy? Pharmacol Biochem Behav 71:845–855

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ (2003) Biochemistry of Parkinson’s disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson’s disease? Adv Neurol 91:39–49

    PubMed  CAS  Google Scholar 

  • Kish SJ (2008) Pharmacologic mechanisms of crystal meth. Can Med Assoc J 178:1679–1682

    Article  Google Scholar 

  • Kish SJ, Olivier A, Dubeau F, Robitaille Y, Sherwin AL (1988a) Increased activity of choline acetyltransferase and acetylcholinesterase in actively epileptic human cerebral cortex. Epilepsy Res 2:227–231

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988b) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    PubMed  CAS  Google Scholar 

  • Kish SJ, Furukawa Y, Ang L, Vorce SP, Kalasinsky KS (2000) Striatal serotonin is depleted in brain of a human MDMA (ecstasy) user. Neurology 55:294–296

    PubMed  CAS  Google Scholar 

  • Kish SJ, Furukawa Y, Chang LJ, Tong J, Ginovart N, Wilson A, Houle S, Meyer JH (2005) Regional distribution of serotonin transporter protein in postmortem human brain: is the cerebellum a SERT-free brain region? Nucl Med Biol 32:123–128

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, McCluskey T, Meyer J, Wilson AA, Houle S (2007) Brain serotonin transporter concentration is decreased in chronic users of the drug ecstasy: a preliminary report. Ther Drug Monitor 29:495

    Google Scholar 

  • Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008a) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131

    PubMed  Google Scholar 

  • Kish SJ, Fitzmaurice PS, Chang LJ, Furukawa Y, Tong J (2008b) Low striatal serotonin transporter protein in a human polydrug MDMA (ecstasy) user: a case study. J Psychopharmacology (in press)

  • Kitamura O, Tokunaga I, Gotohda T, Kubo S (2007) Immunohistochemical investigation of dopaminergic terminal markers and caspase-3 activation in the striatum of human methamphetamine users. Int J Legal Med 121:163–168

    Article  PubMed  Google Scholar 

  • Laverty R, Sharman DF (1965) Modification by drugs of the metabolism of 3,4-dihydroxyphenylethylamine, noradremaline and 5-hydroxytryptamine in the brain. Br J Pharmacol Chemother 24:759–772

    PubMed  CAS  Google Scholar 

  • Leyton M, Paquette V, Gravel P, Rosa-Neto P, Weston F, Diksic M, Benkelfat C (2006) alpha-[11C]Methyl-L-tryptophan trapping in the orbital and ventral medial prefrontal cortex of suicide attempters. Eur Neuropsychopharmacol 16:220–223

    Article  PubMed  CAS  Google Scholar 

  • Mash DC, Staley JK, Izenwasser S, Basile M, Ruttenber AJ (2000) Serotonin transporters upregulate with chronic cocaine use. J Chem Neuroanat 20:271–280

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998a) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422

    PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Scheffel U, Dannals RF, Ricaurte GA (1998b) Positron emission tomographic evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings. Lancet 352:1433–1437

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30:1741–1750

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Kuwabara H, Kumar A, Palermo M, Abbey R, Brasic J, Ye W, Alexander M, Dannals RF, Wong DF, Ricaurte GA (2008a) Persistent cognitive and dopamine transporter deficits in abstinent methamphetamine users. Synapse 62:91–100

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Vranesic M, Palermo M, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2008b) Positron emission tomographic studies of brain dopamine and serotonin transporters in abstinent (+/-)3,4-methylenedioxymethamphetamine (“ecstasy”) users: relationship to cognitive performance. Psychopharmacology (Berl) 200:439–450

    Article  CAS  Google Scholar 

  • McLean JR, McCartney M (1961) Effect of d-amphetamine on rat brain noradrenaline and serotonin. Proc Soc Exp Biol Med 107:77–79

    PubMed  CAS  Google Scholar 

  • Melega WP, Raleigh MJ, Stout DB, Lacan G, Huang SC, Phelps ME (1997) Recovery of striatal dopamine function after acute amphetamine- and methamphetamine-induced neurotoxicity in the vervet monkey. Brain Res 766:113–120

    Article  PubMed  CAS  Google Scholar 

  • Melega WP, Jorgensen MJ, Laćan G, Way BM, Pham J, Morton G, Cho AK, Fairbanks LA (2008) Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles. Neuropsychopharmacology 33:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Montañez S, Owens WA, Gould GG, Murphy DL, Daws LC (2003) Exaggerated effect of fluvoxamine in heterozygote serotonin transporter knockout mice. J Neurochem 86:210–219

    Article  PubMed  CAS  Google Scholar 

  • Moszczynska A, Fitzmaurice P, Ang L, Kalasinsky KS, Schmunk GA, Peretti FJ, Aiken SS, Wickham DJ, Kish SJ (2004) Why is parkinsonism not a feature of human methamphetamine users? Brain 127:363–370

    Article  PubMed  Google Scholar 

  • Müller CP, Carey RJ, Huston JP, De Souza Silva MA (2007) Serotonin and psychostimulant addiction: focus on 5-HT1A-receptors. Prog Neurobiol 81:133–178

    Article  PubMed  CAS  Google Scholar 

  • Mundo E, Walker M, Cate T, Macciardi F, Kennedy JL (2001) The role of serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder: preliminary findings. Arch Gen Psychiatry 58:539–544

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270:741–751

    PubMed  CAS  Google Scholar 

  • Paasonen MK, Vogt M (1956) The effect of drugs on the amounts of substance P and 5-hydroxytryptamine in mammalian brain. J Physiol 131:617–626

    PubMed  CAS  Google Scholar 

  • Paulus MP, Hozack NE, Zauscher BE, Frank L, Brown GG, Braff DL, Schuckit MA (2002) Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology 26:53–63

    Article  PubMed  CAS  Google Scholar 

  • Paulus MP, Hozack N, Frank L, Brown GG, Schuckit MA (2003) Decision making by methamphetamine-dependent subjects is associated with error-rate-independent decrease in prefrontal and parietal activation. Biol Psychiatry 53:65–74

    Article  PubMed  CAS  Google Scholar 

  • Preston KL, Wagner GC, Schuster CR, Seiden LS (1985) Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain. Brain Res 338:243–248

    Article  PubMed  CAS  Google Scholar 

  • Reneman L, Booij J, Lavalaye J, de Bruin K, Reitsma JB, Gunning B, den Heeten GJ, van Den Brink W (2002) Use of amphetamine by recreational users of ecstasy (MDMA) is associated with reduced striatal dopamine transporter densities: a [123I]beta-CIT SPECT study-preliminary report. Psychopharmacology (Berl) 159:335–340

    Article  CAS  Google Scholar 

  • Ricaurte GA, McCann UD (2001) Experimental studies on 3,4-methylenedioxymethamphetamine (MDA, “ecstasy”) and its potential to damage brain serotonin neurons. Neurotox Res 3:85–99

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193:153–163

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 235:93–103

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2002) Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“ecstasy”). Science 297:2260–2263. Retraction in: Ricaurte GA, Yuan J, Hatzidimitriou G, Cord BJ, McCann UD (2003). Science 301:1479

    Article  Google Scholar 

  • Riley HA (1943) An atlas of the basal ganglia, brain stem and spinal cord. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 191:461–482

    Article  CAS  Google Scholar 

  • Schmidt CJ, Sonsalla PK, Hanson GR, Peat MA, Gibb JW (1985) Methamphetamine-induced depression of monoamine synthesis in the rat: development of tolerance. J Neurochem 44:852–855

    Article  PubMed  CAS  Google Scholar 

  • Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 17:275–297

    Article  PubMed  Google Scholar 

  • Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219

    Article  PubMed  CAS  Google Scholar 

  • Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100

    Article  PubMed  CAS  Google Scholar 

  • Shoptaw S, Huber A, Peck J, Yang X, Liu J, Dang J, Roll J, Shapiro B, Rotheram-Fuller E, Ling W (2006) Randomized, placebo-controlled trial of sertraline and contingency management for the treatment of methamphetamine dependence. Drug Alcohol Depend 85:12–8

    Article  PubMed  CAS  Google Scholar 

  • Szabo Z, McCann UD, Wilson AA, Scheffel U, Owonikoko T, Mathews WB, Ravert HT, Hilton J, Dannals RF, Ricaurte GA (2002) Comparison of (+)-(11)C-McN5652 and (11)C-DASB as serotonin transporter radioligands under various experimental conditions. J Nucl Med 43:678–692

    PubMed  CAS  Google Scholar 

  • Tong J, Ross BM, Schmunk GA, Peretti FJ, Kalasinsky KS, Furukawa Y, Ang LC, Aiken SS, Wickham DJ, Kish SJ (2003) Decreased striatal dopamine D1 receptor-stimulated adenylyl cyclase activity in human methamphetamine users. Am J Psychiatry 160:896–903

    Article  PubMed  Google Scholar 

  • Tong J, Hornykiewicz O, Furukawa Y, Kish SJ (2007) Marked dissociation between high noradrenaline versus low noradrenaline transporter levels in human nucleus accumbens. J Neurochem 102:1691–1702

    Article  PubMed  CAS  Google Scholar 

  • Villemagne V, Yuan J, Wong DF, Dannals RF, Hatzidimitriou G, Mathews WB, Ravert HT, Musachio J, McCann UD, Ricaurte GA (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci 18:419–427

    PubMed  CAS  Google Scholar 

  • Völlm BA, de Araujo IE, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, Jezzard P, Heal RJ, Matthews PM (2004) Methamphetamine activates reward circuitry in drug naïve human subjects. Neuropsychopharmacology 29:1715–1722

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001a) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SJ, Miller E, Hitzemann R, Ding YS, Logan J (2001b) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

    PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Ding YS, Sedler M, Logan J, Franceschi D, Gatley J, Hitzemann R, Gifford A, Wong C, Pappas N (2001c) Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 158:2015–2021

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Nobrega JN, Carroll ME, Niznik HB, Shannak K, Lac ST, Pristupa ZB, Dixon LM, Kish SJ (1994) Heterogeneous subregional binding patterns of 3H-WIN 35,428 and 3H-GBR 12,935 are differentially regulated by chronic cocaine self-administration. J Neurosci 14:2966–2979

    PubMed  CAS  Google Scholar 

  • Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703

    Article  PubMed  CAS  Google Scholar 

  • Woolverton WL, Ricaurte GA, Forno LS, Seiden LS (1989) Long-term effects of chronic methamphetamine administration in rhesus monkeys. Brain Res 486:73–78

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Hatzidimitriou G, Suthar P, Mueller M, McCann U, Ricaurte G (2006) Relationship between temperature, dopaminergic neurotoxicity, and plasma drug concentrations in methamphetamine-treated squirrel monkeys. J Pharmacol Exp Ther 316:1210–1218

    Article  PubMed  CAS  Google Scholar 

  • Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, Iguchi M, for the Methamphetamine Treatment Project (2004) Psychiatric symptoms in methamphetamine users. Am J Addict 13:181–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Drug Abuse, National Institute of Health grant DA07182 to SJK and by the New Zealand Institute of Environmental Science and Research, Ltd. to PSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junchao Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kish, S.J., Fitzmaurice, P.S., Boileau, I. et al. Brain serotonin transporter in human methamphetamine users. Psychopharmacology 202, 649–661 (2009). https://doi.org/10.1007/s00213-008-1346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1346-x

Keywords

Navigation