Skip to main content

Advertisement

Log in

Presynaptic control of serotonin on striatal dopamine function

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The influences of the serotonergic system on dopamine (DA) neuron activity have received considerable attention during the last three decades due to the real opportunity to improve disorders related to central DA neuron dysfunctions such as Parkinson’s disease, schizophrenia, or drug abuse with serotonergic drugs. Numerous biochemical and behavioral data indicate that serotonin (5-HT) affects dopaminergic terminal function in the striatum.

Objective

The authors propose a thorough examination of data showing controversial effects induced by striatal 5-HT on dopaminergic activity.

Results

Inhibitory and excitatory effects of exogenous 5-HT have been reported on DA release and synthesis, involving various striatal 5-HT receptors. 5-HT also promotes an efflux of DA through reversal of the direction of DA transport. By analogy with the mechanism of action described for amphetamine, the consequences of 5-HT entering DA terminals might explain both the excitatory and inhibitory effects of 5-HT on presynaptic DA terminal activity, but the physiological relevance of this mechanism is far from clear. The recent data suggest that the endogenous 5-HT system affects striatal DA release in a state-dependent manner associated with the conditional involvement of various 5-HT receptors such as 5-HT2A, 5-HT2C, 5-HT3, and 5-HT4 receptors.

Conclusion

Methodological and pharmacological issues have prevented a comprehensive overview of the influence of 5-HT on striatal DA activity. The distribution of striatal 5-HT receptors and their restricted influence on DA neuron activity suggest that the endogenous 5-HT system exerts multiple and subtle influences on DA-mediated behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramowski D, Rigo M, Duc D, Hoyer D, Staufenbiel M (1995) Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34:1635–1645

    CAS  PubMed  Google Scholar 

  • Adam Y, Edwards RH, Schuldiner S (2008) Expression and function of the rat vesicular monoamine transporter 2. Am J Physiol Cell Physiol 294:C1004–C1008

    CAS  PubMed  Google Scholar 

  • Alex KD, Pehek EA (2007) Pharmacologic mechanisms of serotonergic regulation of dopamine neurotransmission. Pharmacol Ther 113:296–320

    CAS  PubMed  Google Scholar 

  • Alex KD, Yavanian GJ, McFarlane HG, Pluto CP, Pehek EA (2005) Modulation of dopamine release by striatal 5-HT2C receptors. Synapse 55:242–251

    CAS  PubMed  Google Scholar 

  • Andersson JL, Nomikos GG, Marcus M, Hertel P, Mathé JM, Svensson TH (1995) Ritanserin potentiates the stimulatory effects of raclopride on neuronal activity and dopamine release selectively in the mesolimbic dopaminergic system. Naunyn-Schmiedeberg’s Arch Pharmacol 352:374–385

    CAS  Google Scholar 

  • Andrews CM, Lucki I (2001) Effects of cocaine on extracellular dopamine and serotonin levels in the nucleus accumbens. Psychopharmacology (Berl) 155:221–229

    CAS  Google Scholar 

  • Andrews DW, Patrick RL, Barchas J (1978) The effects of 5-hydroxytryptophan and 5-hydroxytryptamine on dopamine synthesis and release in rat brain striatal synaptosomes. J Neurochem 30:465–470

    CAS  PubMed  Google Scholar 

  • Antonelli T, Fuxe K, Tomasini MC, Bartoszyk GD, Seyfried CA, Tanganelli S, Ferraro L (2005) Effects of sarizotan on the corticostriatal glutamate pathways. Synapse 58:193–199

    CAS  PubMed  Google Scholar 

  • Awazi N, Guldberg HC (1978) On the interaction of 5-hydroxytryptophan and 5-hydroxytryptamine with dopamine metabolism in the rat striatum. Naunyn-Schmiedeberg’s Arch Pharmacol 303:63–72

    CAS  Google Scholar 

  • Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179:641–668

    CAS  PubMed  Google Scholar 

  • Bachy A, Héaulme M, Giudice A, Michaud JC, Lefevre IA, Souilhac J, Manara L, Emerit MB, Gozlan H, Hamon M (1993) SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol 237:299–309

    CAS  PubMed  Google Scholar 

  • Balcioglu A, Wurtman RJ (1998) Dexfenfluramine enhances striatal dopamine release in conscious rats via a serotoninergic mechanism. J Pharmacol Exp Ther 284:991–997

    CAS  PubMed  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Ironside JW, Naylor RJ (1989) Identification and characterisation of 5-hydroxytryptamine 3 recognition sites in human brain tissue. J Neurochem 53:1787–1793

    CAS  PubMed  Google Scholar 

  • Barnes JM, Barnes NM, Champaneria S, Costall B, Naylor RJ (1990) Characterization and autoradiographic localisation of 5-HT3 receptor recognition sites identified with [3H]-(S)-zacopride in the forebrain of the rat. Neuropharmacology 29:1037–1045

    CAS  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  PubMed  Google Scholar 

  • Barnes NM, Hales TG, Lummis SC, Peters JA (2009) The 5-HT3 receptor—the relationship between structure and function. Neuropharmacology 56:273–284

    CAS  PubMed  Google Scholar 

  • Baxter G, Kennett G, Blaney F, Blackburn T (1995) 5-HT2 receptor subtypes: a family re-united? Trends Pharmacol Sci 16:105–110

    CAS  PubMed  Google Scholar 

  • Beart PM, McDonald D (1982) 5-Hydroxytryptamine and 5-hydroxytryptaminergic-dopaminergic interactions in the ventral tegmental area of rat brain. J Pharm Pharmacol 34:591–593

    CAS  PubMed  Google Scholar 

  • Bender E, Pindon A, van Oers I, Zhang YB, Gommeren W, Verhasselt P, Jurzak M, Leysen J, Luyten W (2000) Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem 74:478–489

    CAS  PubMed  Google Scholar 

  • Benloucif S, Galloway MP (1991) Facilitation of dopamine release in vivo by serotonin agonists: studies with microdialysis. Eur J Pharmacol 200:1–8

    CAS  PubMed  Google Scholar 

  • Benloucif S, Keegan MJ, Galloway MP (1993) Serotonin-facilitated dopamine release in vivo: pharmacological characterization. J Pharmacol Exp Ther 265:373–377

    CAS  PubMed  Google Scholar 

  • Bentué-Ferrer D, Reymann JM, Rousselle JC, Massot O, Bourin M, Allain H, Fillion G (1998) 5-HT-moduline, a 5-HT(1B/1D) receptor endogenous modulator, interacts with dopamine release measured in vivo by microdialysis. Eur J Pharmacol 358:129–137

    PubMed  Google Scholar 

  • Benuck M, Reith MEA (1992) Dopamine releasing effect of phenylbiguanide in rat striatal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 345:666–672

    CAS  Google Scholar 

  • Benwell ME, Balfour DJ, Lucchi HM (1993) Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology (Berl) 112:467–474

    CAS  Google Scholar 

  • Berge OG, Chacho D, Hole K (1983) Inhibitory effect of 5-methoxy-N,N-dimethyltryptamine on the synaptosomal uptake of 5-hydroxytryptamine. Eur J Pharmacol 90:293–296

    CAS  PubMed  Google Scholar 

  • Berger UV, Gu XF, Azmitia EC (1992) The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine. Eur J Pharmacol 215:153–160

    CAS  PubMed  Google Scholar 

  • Besson MJ, Chéramy A, Feltz P, Glowinski J (1969) Release of the newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Natl Acad Sci USA 62:741–748

    CAS  PubMed  Google Scholar 

  • Blandina P, Goldfarb J, Craddock-Royal B, Green JP (1989) Release of endogenous dopamine by stimulation of 5-HT3 receptors in rat striatum. J Pharmacol Exp Ther 251:803–809

    CAS  PubMed  Google Scholar 

  • Blondel O, Gastineau M, Dahmoune Y, Langlois M, Fischmeister RJ (1998) Cloning, expression, and pharmacology of four human 5-hydroxytryptamine 4 receptor isoforms produced by alternative splicing in the carboxyl terminus. J Neurochem 70:2252–2261

    CAS  PubMed  Google Scholar 

  • Bobillier P, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain-stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    CAS  PubMed  Google Scholar 

  • Bockaert J, Sebben M, Dumuis A (1990) Pharmacological characterization of 5-HT4 receptors positively coupled to adenylate cyclase in adult guinea pig hippocampal membranes: effect of substituted benzamide derivatives. Mol Pharmacol 37:408–411

    CAS  PubMed  Google Scholar 

  • Bonaventure P, Voorn P, Luyten WH, Jurzak M, Schotte A, Leysen JE (1998) Detailed mapping of serotonin 5-HT1B and 5-HT1D receptor messenger RNA and ligand binding sites in guinea-pig brain and trigeminal ganglion: clues for function. Neuroscience 82:469–484

    CAS  PubMed  Google Scholar 

  • Bonaventure P, Hall H, Gommeren W, Cras P, Langlois X, Jurzak M, Leysen JE (2000) Mapping of serotonin 5-HT4 receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse 36:35–46

    CAS  PubMed  Google Scholar 

  • Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1995) Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat. Neuropharmacology 34:269–279

    CAS  PubMed  Google Scholar 

  • Bonsi P, Cuomo D, Ding J, Sciamanna G, Ulrich S, Tscherter A, Bernardi G, Surmeier DJ, Pisani A (2007) Endogenous serotonin excites striatal cholinergic interneurons via the activation of 5-HT2C, 5-HT6, and 5-HT7 serotonin receptors: implications for extrapyramidal side effects of serotonin reuptake inhibitors. Neuropsychopharmacology 32:1840–1854

    CAS  PubMed  Google Scholar 

  • Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine 1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182

    CAS  PubMed  Google Scholar 

  • Bourson A, Boess FG, Bös M, Sleight AJ (1998) Involvement of 5-HT6 receptors in nigro-striatal function in rodents. Br J Pharmacol 125:1562–1566

    CAS  PubMed  Google Scholar 

  • Bowyer JF, Masserano JM, Weiner N (1987) Inhibitory effects of amphetamine on potassium-stimulated release of [3H]dopamine from striatal slices and synaptosomes. J Pharmacol Exp Ther 240:177–186

    CAS  PubMed  Google Scholar 

  • Bruinvels AT, Palacios JM, Hoyer D (1993) 5-Hydroxytryptamine1 recognition sites in rat brain: heterogeneity of non-5-hydroxytryptamine1A/1C binding sites revealed by quantitative receptor autoradiography. Neuroscience 53:465–473

    CAS  PubMed  Google Scholar 

  • Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA, Hoyer D, Palacios JM (1994) Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33:367–386

    CAS  PubMed  Google Scholar 

  • Bubar MJ, Cunningham KA (2007) Distribution of serotonin 5-HT2C receptors in the ventral tegmental area. Neuroscience 146:286–297

    CAS  PubMed  Google Scholar 

  • Bubser M, Backstrom JR, Sanders-Bush E, Roth BL, Deutch AY (2001) Distribution of serotonin 5-HT2A receptors in afferents of the rat striatum. Synapse 39:297–304

    CAS  PubMed  Google Scholar 

  • Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci 18:4854–4860

    CAS  PubMed  Google Scholar 

  • Bunney EB, Appel SB, Brodie MS (2000) Cocaine potentiates ethanol-induced excitation of dopaminergic reward neurons in the ventral tegmental area. J Pharmacol Exp Ther 293:383–389

    CAS  PubMed  Google Scholar 

  • Burnet PWJ, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676:157–168

    CAS  PubMed  Google Scholar 

  • Butcher LL, Engel J, Fuxe K (1972) Behavioral, biochemical, and histochemical analyses of the central effects of monoamine precursors after peripheral decarboxylase inhibition. Brain Res 41:387–411

    CAS  PubMed  Google Scholar 

  • Carboni E, Acquas E, Frau R, Di Chiara G (1989) Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 164:515–519

    CAS  PubMed  Google Scholar 

  • Carta M, Carlsson T, Kirik D, Bjorklund A (2007) Dopamine released from 5-HT terminals is the cause of l-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833

    PubMed  Google Scholar 

  • Cheramy A, Leviel V, Glowinski J (1981) Dendritic release of dopamine in the substantia nigra. Nature 289:537–542

    CAS  PubMed  Google Scholar 

  • Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39:123–132

    CAS  PubMed  Google Scholar 

  • Compan V, Daszuta A, Salin P, Sebben M, Bockaert J, Dumuis A (1996) Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur J Neurosci 8:2591–2598

    CAS  PubMed  Google Scholar 

  • Compan V, Segu L, Buhot MC, Daszuta A (1998) Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of serotonergic neurons. Brain Res 793:103–111

    CAS  PubMed  Google Scholar 

  • Cornea-Hébert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409:187–209

    PubMed  Google Scholar 

  • D’Amato RJ, Largent BL, Snowman AM, Snyder SH (1987) Selective labeling of serotonin uptake sites in rat brain by [3H]citalopram contrasted to labeling of multiple sites by [3H]imipramine. J Pharmacol Exp Ther 242:364–371

    PubMed  Google Scholar 

  • Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397:359–363

    CAS  PubMed  Google Scholar 

  • De Belleroche JS, Bradford HF (1980) Presynaptic control of the synthesis and release of dopamine from striatal synaptosomes: a comparison between the effects of 5-hydroxytryptamine, acetylcholine and glutamate. J Neurochem 35:1227–1234

    PubMed  Google Scholar 

  • De Deurwaerdère P, Bonhomme N, Le Moal M, Spampinato U (1995) d-Fenfluramine enhances striatal dopamine release in vivo by a mechanism independent of serotonergic nerve endings and dopaminergic uptake sites. J Neurochem 65:1100–1108

    PubMed  Google Scholar 

  • De Deurwaerdère P, Bonhomme N, Lucas G, Le Moal M, Spampinato U (1996) Serotonin enhances striatal dopamine outflow in vivo through dopamine uptake sites. J Neurochem 66:210–215

    PubMed  Google Scholar 

  • De Deurwaerdère P, L’hirondel M, Bonhomme N, Lucas G, Chéramy A, Spampinato U (1997) Serotonin stimulation of 5-HT4 receptors indirectly enhances dopamine release in the rat striatum. J Neurochem 68:195–203

    PubMed  Google Scholar 

  • De Deurwaerdère P, Stinus L, Spampinato U (1998) Opposite change of in vivo dopamine release in the rat nucleus accumbens and striatum that follows electrical stimulation of dorsal raphe nucleus: role of 5-HT3 receptors. J Neurosci 18:6528–6538

    PubMed  Google Scholar 

  • De Deurwaerdère P, Cervo L, Stinus L, Spampinato U (2002) Central 5-HT4 receptors and dopamine-dependent motor behaviors: searching for a functional role. Pharmacol Biochem Behav 71:627–633

    PubMed  Google Scholar 

  • De Deurwaerdère P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of serotonin2C receptor inhibits in vivo dopamine release in the rat nucleus accumbens and striatum. J Neurosci 24:3235–3241

    PubMed  Google Scholar 

  • De Deurwaerdère P, Moison D, Navailles S, Porras G, Spampinato U (2005) Regionally and functionally distinct serotonin3 receptors control in vivo dopamine outflow in the rat nucleus accumbens. J Neurochem 94:140–149

    PubMed  Google Scholar 

  • De Deurwaerdère P, Le Moine C, Chesselet MF (2010) Selective blockade of serotonin2C receptor enhances Fos expression specifically in the striatum and the subthalamic nucleus within the basal ganglia. Neurosci Lett 469:251–255

    PubMed  Google Scholar 

  • De Groote L, Olivier B, Westenberg HG (2003) Role of 5-HT1B receptors in the regulation of extracellular serotonin and dopamine in the dorsal striatum of mice. Eur J Pharmacol 476:71–77

    PubMed  Google Scholar 

  • de Langen CD, Stoof JC, Mulder AH (1979) Studies on the nature of the releasable pool of dopamine in synaptosomes from rat corpus striatum: depolarization-induced release of 3H-dopamine from superfused synaptosomes labelled under various conditions. Naunyn-Schmiedeberg’s Arch Pharmacol 308:41–49

    Google Scholar 

  • De Simoni MG, Dal Toso G, Froditto F, Sokola A, Algeri S (1987) Modulation of striatal metabolism by the activity of dorsal raphe serotonergic afferences. Brain Res 411:81–88

    PubMed  Google Scholar 

  • Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27–47

    CAS  PubMed  Google Scholar 

  • Descarries L, Seguela P, Watkins KC (1991) Nonjunctional relationships of monoamine axon terminals in the cerebral cortex of adult rat. In: Fuxe K, Agnati LF (eds) Volume transmission in the brain: novel mechanisms for neural transmission. Raven, New York, pp 53–62

    Google Scholar 

  • Deutch AY, Moghaddam B, Innis RB, Krystal JH, Aghajanian GK, Bunney BS, Charney DS (1991) Mechanisms of action of atypical antipsychotic drugs: implications for novel therapeutic strategies for schizophrenia. Schizophr Res 4:21–156

    Google Scholar 

  • Dewar KM, Reader TA, Grondin L, Descarries L (1991) [3H]paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region. Synapse 9:14–26

    CAS  PubMed  Google Scholar 

  • Dewey SL, Smith GS, Logan J, Alexof D, Ding Y, King P, Pappas N, Brodie JD, Ashby CR (1995) Serotonergic modulation of striatal dopamine measured with positon emission tomography (PET) and in vivo microdialysis. J Neurosci 15:821–829

    CAS  PubMed  Google Scholar 

  • Di Chiara G (1990) In vivo brain dialysis of neurotransmitters. Trends Pharmacol Sci 11:116–121

    PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    PubMed  Google Scholar 

  • Di Chiara G, Tanda GL, Frau R, Carboni E (1992) Heterologous monoamine reuptake: lack of transmitter specificity of neuron-specific carriers. Neurochem Int 20:231S–235S

    PubMed  Google Scholar 

  • Di Giovanni G, De Deurwaerdère P, Di Mascio M, Di Matteo V, Esposito E, Spampinato U (1999) Selective blockade of serotonin2B/2C receptors enhances mesolimbic and mesostriatal dopaminergic function: a combined in vivo electrophysiological and microdialysis study. Neuroscience 91:587–597

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Pierucci M, Esposito E (2008) Serotonin–dopamine interaction: electrophysiological evidence. Prog Brain Res 172:45–71

    PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E (2004) Selective stimulation of serotonin2c receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem 89:418–429

    PubMed  Google Scholar 

  • Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson’s disease and other motor disorders. Prog Brain Res 172:423–463

    PubMed  Google Scholar 

  • Doménech T, Beleta J, Palacios JM (1997) Characterization of human serotonin 1D and 1B receptors using [3H]-GR-125743, a novel radiolabelled serotonin 5HT1D/1B receptor antagonist. Naunyn-Schmiedeberg’s Arch Pharmacol 356:328–334

    Google Scholar 

  • Doucet E, Miquel MC, Nosjean A, Vergé D, Hamon M, Emerit MB (2000) Immunolabeling of the rat central nervous system with antibodies partially selective of the short form of the 5-HT3 receptor. Neuroscience 95:881–892

    CAS  PubMed  Google Scholar 

  • Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48:34–42

    CAS  PubMed  Google Scholar 

  • Dugast C, Suaud-Chagny MF, Gonon F (1994) Continuous in vivo monitoring of evoked dopamine release in the rat nucleus accumbens by amperometry. Neuroscience 62:647–654

    CAS  PubMed  Google Scholar 

  • Dumuis A, Bouhehal R, Sebben M, Cory R, Bockaert J (1988) A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 34:880–887

    CAS  PubMed  Google Scholar 

  • Dumuis A, Sebben M, Bockaert BRL (1989) BRL 24924: a potent agonist at a non-classical 5-HT receptor positively coupled with adenylate cyclase in colliculi neurons. J Eur Pharmacol 162:381–384

    CAS  Google Scholar 

  • Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76:323–329

    CAS  PubMed  Google Scholar 

  • Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384:233–247

    CAS  PubMed  Google Scholar 

  • Egerton A, Ahmad R, Hirani E, Grasby PM (2008) Modulation of striatal dopamine release by 5-HT2A and 5-HT2C receptor antagonists: [11C]raclopride PET studies in the rat. Psychopharmacology (Berl) 200:487–496

    CAS  Google Scholar 

  • El Ayadi A, Afailal I, Errami M (2001) Effects of voltage-sensitive calcium channel blockers on extracellular dopamine levels in rat striatum. Metab Brain Dis 16:121–131

    CAS  PubMed  Google Scholar 

  • Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 332:1–7

    CAS  Google Scholar 

  • Ennis C, Kemp JD, Cox B (1981) Characterization of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum. J Neurochem 36:1515–1520

    CAS  PubMed  Google Scholar 

  • Erlander MG, Lovenberg TW, Baron BM, de Lecea L, Danielson PE, Racke M, Slone AL, Siegel BW, Foye PE, Cannon K, Burns JE, Sutcliffe JG (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 90:3452–3456

    CAS  PubMed  Google Scholar 

  • Ferré S, Cortés R, Artigas F (1994) Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J Neurosci 14:4839–4846

    PubMed  Google Scholar 

  • Feuerstein TJ, Hertting G, Lupp A, Neufang B (1986) False labelling of dopaminergic terminals in the rabbit caudate nucleus: uptake and release of [3H]-5-hydroxytryptamine. Br J Pharmacol 88:677–684

    CAS  PubMed  Google Scholar 

  • Fink KB, Göthert M (2007) 5-HT receptor regulation of neurotransmitter release. Pharmacol Rev 59:360–417

    CAS  PubMed  Google Scholar 

  • Fox SH, Brotchie JM (2000) 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson’s disease. Mov Disord 15:1064–1069

    CAS  PubMed  Google Scholar 

  • Frankel PS, Harlan RE, Garcia MM (1998) The 5-HT3 receptor antagonist, MDL 72222, dose dependently potentiates morphine-induced immediate-early gene expression in the caudate putamen. Brain Res 814:186–193

    CAS  PubMed  Google Scholar 

  • Frechilla D, Cobreros A, Saldise L, Moratalla R, Insausti R, Luquin M, Del Río J (2001) Serotonin 5-HT1A receptor expression is selectively enhanced in the striosomal compartment of chronic parkinsonian monkeys. Synapse 39:288–296

    CAS  PubMed  Google Scholar 

  • Fujita S, Kiguchi M, Lee J, Terakado M, Suga K, Hatanaka H, Koshikawa N (2008) 5-HT1A and 5-HT1B receptors in the ventrolateral striatum differentially modulate apomorphine-induced jaw movements in rats. J Oral Sci 50:387–395

    CAS  PubMed  Google Scholar 

  • Gallager DW, Sanders-Bush E, Aghajanian GK, Sulser F (1975) An evaluation of the use of intraventricularly administered [3H]-5-hydroxytryptamine as a marker for endogenous brain 5-hydroxytryptamine. Brain Res 93:111–122

    CAS  PubMed  Google Scholar 

  • Galloway MP, Suchowski C, Keegan MJ, Hjorth S (1993) Local infusion of the selective 5-HT1B agonist CP-93,129 facilitates striatal dopamine release in vivo. Synapse 15:90–92

    CAS  PubMed  Google Scholar 

  • Ge J, Barnes NM (1996) 5-HT4 receptor mediated modulation of 5-HT release in the rat hippocampus in vivo. Brain J Pharmacol 117:1475–1480

    CAS  Google Scholar 

  • Gerald C, Adham N, Kao H-T, Olsen MA, Laz TM, Schechter LE, Bard JA, Vaysse PJ-J, Hartig PR, Branchek TA, Weinshank LW (1995) The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J 14:2806–2815

    CAS  PubMed  Google Scholar 

  • Gérard C, el Mestikawy SE, Lebrand C, Adrien J, Ruat M, Traiffort E, Hamon M, Martres M-P (1996) Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxytryptamine-treated rats. Synapse 23:164–173

    PubMed  Google Scholar 

  • Gérard C, Martres MP, Lefèvre K, Miquel MC, Vergé D, Lanfumey L, Doucet E, Hamon M, el Mestikawy SE (1997) Immuno-localization of serotonin 5-HT6 receptor-like material in the rat central nervous system. Brain Res 746:207–219

    PubMed  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature 311:461–464

    CAS  PubMed  Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236:454–476

    CAS  PubMed  Google Scholar 

  • Gerfen CR (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7:3915–3934

    CAS  PubMed  Google Scholar 

  • Giambalvo CT, Snodgrass SR (1978) Biochemical and behavioral effects of serotonin neurotoxins on the nigrostriatal dopamine system: comparison of injection sites. Brain Res 152:555-566

    CAS  PubMed  Google Scholar 

  • Gozlan H, El Mestikawi S, Pichat L, Glowinski J, Hamon M (1983) Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature (Lond) 305:40–142

    Google Scholar 

  • Graybiel AM (1991) Basal ganglia—input, neural activity, and relation to the cortex. Curr Opin Neurobiol 1:644–651

    CAS  PubMed  Google Scholar 

  • Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644

    CAS  PubMed  Google Scholar 

  • Grossman CJ, Kilpatrick GJ, Bunce KT (1993) Development of a radioligand binding assay for 5-HT4 receptors in guinea-pig and rat brain. Br J Pharmacol 109:618–624

    CAS  PubMed  Google Scholar 

  • Gudelsky GA, Yamamoto BK (2008) Actions of 3,4-methylenedioxymethamphetamine (MDMA) on cerebral dopaminergic, serotonergic and cholinergic neurons. Pharmacol Biochem Behav 90:198–207

    CAS  PubMed  Google Scholar 

  • Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikstrom H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635. Brain Res 745:96–108

    CAS  PubMed  Google Scholar 

  • Hållbus M, Magnusson T, Magnusson O (1997) Influence of 5-HT1B/1D receptors on dopamine release in the guinea pig nucleus accumbens: a microdialysis study. Neurosci Lett 225:57–60

    PubMed  Google Scholar 

  • Hamon M, Lanfumey L, el Mestikawy S, Boni C, Miquel MC, Bolaños F, Schechter L, Gozlan H (1990) The main features of central 5-HT1 receptors. Neuropsychopharmacology 3:349–360

    CAS  PubMed  Google Scholar 

  • Hamon M, Doucet E, Lefevre K, Miquel MC, Lanfumey L, Insausti R, Frechilla D, Del Rio J, Verge D (1999) Antibodies and antisense oligonucleotide for probing the distribution and putative functions of central 5-HT6 receptors. Neuropsychopharmacology 21:68S–76S

    CAS  PubMed  Google Scholar 

  • Heidmann DEA, Metcalf MA, Kohen R, Hamblin MW (1997) Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rats produced by alternative splicing: species differences due to altered intron–exon organization. J Neurochem 68:1372–1381

    CAS  PubMed  Google Scholar 

  • Hen R (1992) Of mice and flies: commonalities among 5-HT receptors. Trends Pharmacol Sci 13:160–165

    CAS  PubMed  Google Scholar 

  • Herdon H, Strupish J, Nahorski SR (1985) Differences between the release of radiolabelled and endogenous dopamine from superfused rat brain slices: effect of depolarizing stimuli, amphetamine and synthesis inhibition. Brain Res 348:309–320

    CAS  PubMed  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) VII. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46:157–203

    CAS  PubMed  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    CAS  PubMed  Google Scholar 

  • Hrdina PD, Foy B, Hepner A, Summers RJ (1990) Antidepressant binding sites in brain: autoradiographic comparison of [3H]paroxetine and [3H]imipramine localization and relationship to serotonin transporter. J Pharmacol Exp Ther 252:410–418

    CAS  PubMed  Google Scholar 

  • Ichikawa J, Meltzer HY (1995) Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur J Pharmaco 281:255–261

    CAS  Google Scholar 

  • Imperato A, Angelucci L (1989) 5-HT3 receptors control dopamine release in the nucleus accumbens of freely-moving rats. Neurosci Lett 101:214–217

    CAS  PubMed  Google Scholar 

  • Iyer RN, Bradberry CW (1996) Serotonin-mediated increase in prefrontal cortex dopamine release: pharmacological characterization. J Pharmacol Exp Ther 277:40–47

    CAS  PubMed  Google Scholar 

  • Izenwasser S, Werling LL, Rosenberger JG, Cox BM (1990) Characterization of binding of [3H]GBR 12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)-piperazine) to membranes and to solubilized membrane extracts from terminal field regions of mesolimbic, mesocortical and nigrostriatal dopamine pathways. Neuropharmacology 29:1017–1024

    CAS  PubMed  Google Scholar 

  • Jackson BP, Wightman RM (1995) Dynamics of 5-hydroxytryptamine released from dopamine neurons in the caudate putamen of the rat. Brain Res 674:163–166

    CAS  PubMed  Google Scholar 

  • Jacocks HM, Cox BM (1992) Serotonin-stimulated release of (3H)-dopamine via reversal of the dopamine transporter in rat striatum and nucleus accumbens: a comparison with release elicited by potassium, N-methyl-d-aspartic acid, glutamic acid and d-amphetamine. J Pharmacol Exp Ther 262:356–364

    PubMed  Google Scholar 

  • Jakeman LB, To ZP, Eglen RM, Wong EHF, Bonhaus DW (1994) Quantitative autoradiography of 5-HT4 receptors in brains of three species using two structurally distinct radioligands, [3H]GR113808 and [3H]BIMU-1. Neuropharmacology 33:1027–1038

    CAS  PubMed  Google Scholar 

  • Jenner P, Sheehy M, Marsden CD (1983) Noradrenaline and 5-hydroxytryptamine modulation of brain dopamine function: implications for the treatment of Parkinson’s disease. Br J Clin Pharmacol 15:277S–289S

    PubMed  Google Scholar 

  • Johnson EA, Tsai CE, Shahan YH, Azzaro AJ (1993) Serotonin 5-HT1A receptors mediate inhibition of tyrosine hydroxylation in rat striatum. J Pharmacol Exp Ther 266:133–141

    CAS  PubMed  Google Scholar 

  • Johnson EA, Fox JL, Azzaro AJ (1996) The anxiolytic serotonin 5-HT1A receptor agonists buspirone, ipsapirone and gepirone are inhibitors of tyrosine hydroxylation in rat striatum. Behav Brain Res 73:331–335

    CAS  PubMed  Google Scholar 

  • Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    CAS  PubMed  Google Scholar 

  • Kalén P, Strecker RE, Rosengren E, Björklund A (1988) Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem 51:1422–1435

    PubMed  Google Scholar 

  • Kamal LA, Arbilla S, Galzin AM, Langer SZ (1983) Amphetamine inhibits the electrically evoked release of [3H]dopamine from slices of the rabbit caudate. J Pharmacol Exp Ther 227:446–458

    CAS  PubMed  Google Scholar 

  • Kelly E, Jenner P, Marsden CD (1985) Evidence that [3H]dopamine is taken up and released from nondopaminergic nerve terminals in the rat substantia nigra in vitro. J Neurochem 45:137–144

    CAS  PubMed  Google Scholar 

  • Kidd EJ, Laporte AM, Langlois X, Fattaccini C-M, Doyen C, Lombard MC, Gozlan H, Hamon M (1993) 5-HT3 receptors in the rat central nervous system are mainly located on nerve fibres and terminals. Brain Res 612:289–298

    CAS  PubMed  Google Scholar 

  • Kilpatrick G, Jones BJ, Tyers MB (1989) Binding of the 5-HT3 ligand, 3H GR 65630, to rat area postrema, vagus nerve and the brains of several species. Eur J Pharmacol 159:157–164

    CAS  PubMed  Google Scholar 

  • Kirby LG, Kreiss DS, Singh A, Lucki I (1995) Effect of destruction of serotonin neurons on basal and fenfluramine-induced serotonin release in striatum. Synapse 20:99–105

    CAS  PubMed  Google Scholar 

  • Koch S, Galloway MP (1997) MDMA induced dopamine release in vivo: role of endogenous serotonin. J Neural Transm 104:135–146

    CAS  PubMed  Google Scholar 

  • Kreiss DF, Wieland S, Lucki I (1993) The presence of a serotonin uptake inhibitor alters pharmacological manipulations of serotonin release. Neuroscience 52:295–301

    CAS  PubMed  Google Scholar 

  • Kuhr WG, Ewing AG, Near JA, Wightman RM (1985) Amphetamine attenuates the stimulated release of dopamine in vivo. J Pharmacol Exp Ther 232:388–394

    CAS  PubMed  Google Scholar 

  • Laporte AM, Lima L, Gozlan H, Hamon M (1994) Selective in vivo labelling of brain 5-HT1A receptors by [3H]WAY 100635 in the mouse. Eur J Pharmacol 271:505–514

    CAS  PubMed  Google Scholar 

  • Laprade N, Radja F, Reader TA, Soghomonian JJ (1996) Dopamine receptor agonists regulate levels of the serotonin 5-HT2A receptor and its mRNA in a subpopulation of rat striatal neurons. J Neurosci 16:3727–3736

    CAS  PubMed  Google Scholar 

  • Levi G, Raiteri M (1993) Carrier-mediated release of neurotransmitters. Trends Neurosci 16:415–419

    CAS  PubMed  Google Scholar 

  • Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J (1988) Identification of nonserotonergic [3H]ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin- and tetrabenazine-like drugs. J Pharmacol Exp Ther 244:310–321

    CAS  PubMed  Google Scholar 

  • Lindvall O, Björklund A (1978) Anatomy of the dopaminergic neuron systems in the rat brain. Adv Biochem Psychopharmacol 19:1–23

    CAS  PubMed  Google Scholar 

  • López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (1998) [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37:1147–1158

    PubMed  Google Scholar 

  • Lopez-Gimenez JF, Mengod G, Palacios JM, Vilaro MT (1999) Human striosomes are enriched in 5-HT2A receptors: autoradiographical visualization with [3H]MDL 100,907, [125I](±)DOI and [3H]ketanserin. Eur J Neurosci 11:3761–3765

    CAS  PubMed  Google Scholar 

  • López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL 100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429:571–589

    PubMed  Google Scholar 

  • Loric S, Launay JM, Colas JF, Maroteaux L (1992) New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett 312:203–207

    CAS  PubMed  Google Scholar 

  • Lovenberg TW, Erlander MG, Baron BM, Racke M, Slone AL, Siegel BW, Craft CM, Burns JE, Danielson PE, Sutcliffe JG (1993) Molecular cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes. Proc Natl Acad Sci USA 90:2184–2188

    CAS  PubMed  Google Scholar 

  • Lucas G, Spampinato U (2000) Role of striatal serotonin2A and serotonin2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. J Neurochem 74:693–701

    CAS  PubMed  Google Scholar 

  • Lucas G, Bonhomme N, De Deurwaerdère P, Le Moal M, Spampinato U (1997) 8-OH-DPAT, a 5-HT1A agonist and ritanserin, a 5-HT2A/C antagonist, reverse haloperidol-induced catalepsy in rats independently of striatal dopamine release. Psychopharmacology 131:57–63

    CAS  PubMed  Google Scholar 

  • Lucas G, De Deurwaerdère P, Porras G, Spampinato U (2000a) Endogenous serotonin enhances the release of dopamine in the striatum only when nigro-striatal dopaminergic transmission is activated. Neuropharmacology 39:1984–1995

    CAS  PubMed  Google Scholar 

  • Lucas G, De Deurwaerdère P, Caccia S, Spampinato U (2000b) The effect of serotonergic agents on haloperidol-induced striatal dopamine release in vivo: opposite role of 5-HT2A and 5-HT2C receptor subtypes and significance of the haloperidol dose used. Neuropharmacology 39:1053–1063

    CAS  PubMed  Google Scholar 

  • Lucas G, Di Matteo V, De Deurwaerdère P, Porras G, Martin-Ruiz R, Artigas F, Esposito E, Spampinato U (2001) Neurochemical and electrophysiological evidence that 5-HT4 receptors exert a state-dependent facilitatory control in vivo on nigrostriatal, but not mesoaccumbal dopaminergic function. Eur J Neurosci 13:889–898

    CAS  PubMed  Google Scholar 

  • Lupp A, Bär KI, Lücking CH, Feuerstein TJ (1992) Different effects of serotonin (5-HT) uptake blockers in caudate nucleus and hippocampus of the rabbit: role of monoamine oxidase in dopaminergic terminals. Psychopharmacology (Berl) 106:118–126

    CAS  Google Scholar 

  • Luthman J, Friedemann MN, Hoffer BJ, Gerhardt GA (1993) In vivo electrochemical measurements of exogenous dopamine clearance in normal and neonatal 6-hydroxydopamine-treated rat striatum. Exp Neurol 122:273–282

    Google Scholar 

  • Molineaux SM, Jessell TM, Axel R, Julius D (1989) 5-HT1c receptor is a prominent serotonin receptor subtype in the central nervous system. Proc Natl Acad Sci USA 86:6793–6797

    CAS  PubMed  Google Scholar 

  • Malgouris C, Flamand F, Doble A (1993) Autoradiographic studies of RP 62203, a potent 5-HT2 receptor antagonist. Pharmacological characterization of [3H]RP 62203 binding in the rat brain. Eur J Pharmacol 233:37–45

    CAS  PubMed  Google Scholar 

  • Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5-HT3 receptor, a serotonin-gated ion channel. Science 254:432–437

    CAS  PubMed  Google Scholar 

  • Martín-Cora FJ, Pazos A (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br J Pharmacol 141:92–104

    PubMed  Google Scholar 

  • Melamed E, Zoldan J, Friedberg G, Ziv I, Weizmann A (1996) Involvement of serotonin in clinical features of Parkinson’s disease and complications of l-DOPA therapy. Adv Neurol 69:545–550

    CAS  PubMed  Google Scholar 

  • Meltzer HY (1999) Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 46:1321–1327

    CAS  PubMed  Google Scholar 

  • Meltzer HY, Nash JF (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev 43:587–604

    CAS  PubMed  Google Scholar 

  • Mengod G, Nguyen H, Le H, Waeber C, Lubbert H, Palacios JM (1990) The distribution and cellular localisation of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization hystochemistry. Comparison with receptor binding distribution. Neuroscience 35:577–591

    CAS  PubMed  Google Scholar 

  • Mengod G, Vilaró MT, Raurich A, López-Giménez JF, Cortés R, Palacios JM (1996) 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem J 28:747–758

    CAS  PubMed  Google Scholar 

  • Mereu G, Fanni B, Gessa GL (1984) General anesthetics prevent dopaminergic neuron stimulation by neuroleptics. In: Usdin E, Carlsson A, Dahlstrom A, Engel J (eds) Catecholamines: neuropharmacology and central nervous system—theoretical aspects. Liss, New York, pp 353–358

    Google Scholar 

  • Mignon L, Wolf WA (2007) Postsynaptic 5-HT1A receptor stimulation increases motor activity in the 6-hydroxydopamine-lesioned rat: implications for treating Parkinson’s disease. Psychopharmacology (Berl) 192:49–59

    CAS  Google Scholar 

  • Mikics E, Vas J, Aliczki M, Halasz J, Haller J (2009) Interactions between the anxiogenic effects of CB1 gene disruption and 5-HT3 neurotransmission. Behav Pharmacol 20:265–272

    CAS  PubMed  Google Scholar 

  • Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    CAS  PubMed  Google Scholar 

  • Millan MJ, Brocco M, Gobert A, Joly F, Bervoets K, Rivet JM, Newman-Tancredi A, Audinot V, Maurel S (1999) Contrasting mechanisms of action and sensitivity to antipsychotics of phencyclidine versus amphetamine: importance of nucleus accumbens 5-HT2A sites for PCP-induced locomotion in the rat. Eur J Neurosci 11:4419–4432

    CAS  PubMed  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    CAS  PubMed  Google Scholar 

  • Miyake A, Mochizuki S, Takemoto Y, Akuzawa S (1995) Molecular cloning of human 5-hydroxytryptamine3 receptor: heterogeneity in distribution and function among species. Mol Pharmacol 48:407–416

    CAS  PubMed  Google Scholar 

  • Moison D, De Deurwaerdère P, Cagnotto A, Marrazzo A, Prezzavento O, Ronsisvalle G, Mennini T, Spampinato U (2003) Intrastriatal administration of sigma ligands inhibits striatal dopamine release in vivo. Neuropharmacology 45:945–953

    CAS  PubMed  Google Scholar 

  • Monsma FJ Jr, Shen Y, Ward RP, Hamblin MW, Sibley DR (1993) Cloning and expression of a novel serotonin receptor whith high affinity for tricyclic psychotropic drugs. Mol Pharmacol 43:320–327

    CAS  PubMed  Google Scholar 

  • Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17:3157–3167

    CAS  PubMed  Google Scholar 

  • Morales M, Wang S-D (2002) Differential composition of 5-hydroxytryptamine3 receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22:6732–6741

    CAS  PubMed  Google Scholar 

  • Morales M, Battenberg E, De Lecea L, Sanna PP, Bloom FE (1996) Cellular and subcellular immunolocalization of the type 3 serotonin receptor in the rat central nervous system. Mol Brain Res 36:251–260

    CAS  PubMed  Google Scholar 

  • Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54:701–717

    CAS  PubMed  Google Scholar 

  • Moukhles H, Bosler O, Bolam JP, Vallée A, Umbriaco D, Geffard M, Doucet G (1997) Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 76:1159–1171

    CAS  PubMed  Google Scholar 

  • Muneoka KT, Takigawa M (2003) 5-Hydroxytryptamine7 (5-HT7) receptor immunoreactivity-positive ‘stigmoid body’-like structure in developing rat brains. Int J Dev Neurosci 21:133–143

    CAS  PubMed  Google Scholar 

  • Muramatsu M, Tamaki-Ohashi J, Usuki C, Araki H, Chaki S, Aihara H (1988) 5-HT2 antagonists and minaprine block the 5-HT-induced inhibition of dopamine release from rat striatal slices. Eur J Pharmacol 153:89–95

    CAS  PubMed  Google Scholar 

  • Nash F (1990) Ketanserin pretreatment attenuates MDMA-induced dopamine release in the striatum as measured by in vivo microdialysis. Life Sci 47:2401-2408

    CAS  PubMed  Google Scholar 

  • Nash F, Brodkin J (1991) Microdialysis studies on 3,4-methylenedioxymethamphetamine-induced DA release: effect of DA uptake inhibitors. J Pharmacol Exp Ther 259:820–825

    CAS  PubMed  Google Scholar 

  • Navailles S, De Deurwaerdère P (2011) The constitutive activity of 5-HT2C receptors as an additional modality of interaction of the serotonergic system. In 5-HT2C Receptors in the Pathophysiology of CNS Disease. Di Giovanni G, Esposito E, Vincenzo M (eds) Series: The Receptors, vol 22, first eds. Springer, Humana Press

  • Navailles S, De Deurwaerdère P, Porras G, Spampinato U (2004) In vivo evidence that 5-HT2C receptor antagonist but not agonist modulates cocaine-induced dopamine outflow in the rat nucleus accumbens and striatum. Neuropsychopharmacology 29:319–326

    CAS  PubMed  Google Scholar 

  • Navailles S, Moison D, Ryczko D, Spampinato U (2006) Region-dependent regulation of mesoaccumbens dopamine neurons in vivo by the constitutive activity of central serotonin2C receptors. J Neurochem 99:1311–1319

    CAS  PubMed  Google Scholar 

  • Navailles S, Bioulac B, Gross C, De Deurwaerdère P (2010) Serotonergic neurons mediate an ectopic release of dopamine in a rat model of Parkinson’s disease. Neurobiol Dis 38:136–143

    CAS  PubMed  Google Scholar 

  • Narita N, Hashimoto K, Tomitaka S-I, Minabe Y (1996) Interaction of selective serotonin reuptake inhibitors with subtypes of σ receptors in the rat brain. Eur J Pharmacol 307:117–119

    CAS  PubMed  Google Scholar 

  • Neumaier JF, Sexton TJ, Yracheta J, Diaz AM, Brownfield M (2001) Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21:63–73

    CAS  PubMed  Google Scholar 

  • Ng LK, Chase TN, Colburn RW, Kopin IJ (1972) l-DOPA in parkinsonism. A possible mechanism of action. Neurology 22:688–696

    CAS  PubMed  Google Scholar 

  • Ng NK, Lee HS, Wong PT (1999) Regulation of striatal dopamine release through 5-HT1 and 5-HT2 receptors. J Neurosci Res 55:600–607

    CAS  PubMed  Google Scholar 

  • Numan S, Lundgren KH, Wright DE, Herman JP, Seroogy KB (1995) Increased expression of 5HT2 receptor mRNA in rat striatum following 6-OHDA lesions of the adult nigrostriatal pathway. Brain Res Mol Brain Res 29:391–396

    CAS  PubMed  Google Scholar 

  • Nurse B, Russell VA, Taljaard JJF (1988) Characterization of the effects of serotonin on the release of [3H]dopamine from rat nucleus accumbens and striatal slices. Neurochem Res 13:403–407

    CAS  PubMed  Google Scholar 

  • Oliver KR, Kinsey AM, Wainwright A, Sirinathsinghji DJ (2000) Localization of 5-ht5A receptor-like immunoreactivity in the rat brain. Brain Res 867:131–142

    CAS  PubMed  Google Scholar 

  • Pact V, Giduz T (1999) Mirtazapine treats resting tremor, essential tremor, and levodopa-induced dyskinesias. Neurology 53:1154

    CAS  PubMed  Google Scholar 

  • Parsons LH, Justice JB (1993) Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Res 606:195–199

    CAS  PubMed  Google Scholar 

  • Pasqualetti M, Nardi I, Ladinsky H, Marazziti D, Cassano GB (1996) Comparative anatomical distribution of serotonin 1A, 1D and 2A receptor mRNAs in human brain postmortem. Mol Brain Res 39:223–233

    CAS  PubMed  Google Scholar 

  • Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92:601–611

    CAS  PubMed  Google Scholar 

  • Patel S, Roberts J, Moorman J, Reavill C (1995) Localization of serotonin-4 receptors in the striatonigral pathway in the rat brain. Neuroscience 69:1159–1167

    CAS  PubMed  Google Scholar 

  • Patterson TA, Schenk JO (1991) Effects of acute and chronic systemic administration of some typical antipsychotic drugs on turnover of dopamine and potassium ion-induced release of dopamine in the striatum of the rat in vivo. Neuropharmacology 30:943–952

    CAS  PubMed  Google Scholar 

  • Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249

    CAS  PubMed  Google Scholar 

  • Perry DC (1990) Autoradiography of [3H]quipazine in rodent brain. Eur J Pharmacol 187:75–85

    CAS  PubMed  Google Scholar 

  • Pitts DK, Marwah J (1988) Cocaine and central monoaminergic neurotransmission: a review of electrophysiological studies and comparison to amphetamine and antidepressants. Life Sci 42:949–968

    CAS  PubMed  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12:440–453

    CAS  PubMed  Google Scholar 

  • Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2B receptors. Mol Brain Res 23:163–178

    CAS  PubMed  Google Scholar 

  • Porras G, Di Matteo V, De Deurwaerdère P, Esposito E, Spampinato U (2002a) Central 5-HT4 receptors selectively regulate the impulse-dependent exocytosis of dopamine in the rat striatum: in vivo studies with morphine amphetamine and cocaine. Neuropharmacology 43:1099–1109

    CAS  PubMed  Google Scholar 

  • Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdère P, Caccia S, Esposito E, Spampinato U (2002b) 5-HT2A and 5-HT2C/2B receptor subtypes respectively modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324

    CAS  PubMed  Google Scholar 

  • Porras G, De Deurwaerdère P, Moison D, Spampinato U (2003) Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatum. Eur J Neurosci 17:771–781

    PubMed  Google Scholar 

  • Pouzet B, Didriksen M, Arnt J (2002) Effects of the 5-HT6 receptor antagonist, SB-271046, in animal models for schizophrenia. Pharmacol Biochem Behav 71:635–643

    CAS  PubMed  Google Scholar 

  • Pozzi L, Trabace L, Invernizzi R, Samanin R (1995) Intranigral GR 113808, a selective 5-HT4 receptor antagonist, attenuates morphine-stimulated dopamine release in the rat striatum. Brain Res 692:265–268

    CAS  PubMed  Google Scholar 

  • Quirion R, Richard J (1987) Differential effects of selective lesions of cholinergic and dopaminergic neurons on serotonin-type 1 receptors in rat brain. Synapse 1:124–130

    CAS  PubMed  Google Scholar 

  • Radja F, Laporte A-M, Daval G, Vergé D, Gozlan H, Hamon M (1991) Autoradiography of serotonin receptor subtypes in the central nervous system. Neurochem Int 18:1–15

    CAS  PubMed  Google Scholar 

  • Radja F, Descarries L, Dewar KM, Reader TA (1993) Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: a quantitative autoradiographic study. Brain Res 606:273–285

    CAS  PubMed  Google Scholar 

  • Rees S, den Daas I, Foord S, Goodson S, Bull D, Kilpatrick G, Lee M (1994) Cloning and characterisation of the human 5-HT5A serotonin receptor. FEBS Lett 355:242–246

    CAS  PubMed  Google Scholar 

  • Reynolds GP, Mason SL, Meldrun A, De Keczer S, Parnes H, Eglen RM, Wong EHF (1995) 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol 114:993–998

    CAS  PubMed  Google Scholar 

  • Roberts JC, Reavill C, East SZ, Harrison PJ, Patel S, Routledge C, Leslie RA (2002) The distribution of 5-HT6 receptors in rat brain: an autoradiographic binding study using the radiolabelled 5-HT6 receptor antagonist [125I]SB-258585. Brain Res 934:49–57

    CAS  PubMed  Google Scholar 

  • Rothman RB, Baumann MH (2006) Balance between dopamine and serotonin release modulates behavioral effects of amphetamine-type drugs. Ann NY Acad Sci 1074:245–260

    CAS  PubMed  Google Scholar 

  • Ruat M, Traiffort E, Arrang JM, Tardivel-Lacombe J, Diaz J, Leurs R, Schwartz JC (1993a) A novel rat serotonin (5-HT6) receptor: molecular cloning, localization and stimulation of cAMP accumulation. Biochem Biophys Res Commun 193:268–276

    CAS  PubMed  Google Scholar 

  • Ruat M, Traiffort E, Leurs R, Tardivel-Lacombe J, Diaz J, Arrang J-M, Schwartz J-C (1993b) Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. Proc Natl Acad Sci 90:8547–8551

    CAS  PubMed  Google Scholar 

  • Saavedra JM (1977) Distribution of serotonin and synthesizing enzymes in discrete areas of the brain. Fed Proc 36:2134–2141

    CAS  PubMed  Google Scholar 

  • Santiago M, Machado A, Cano J (1995) 5-HT3 receptor agonist induced carrier-mediated release of dopamine in rat striatum in vivo. Br J Pharmacol 116:1545–1550

    CAS  PubMed  Google Scholar 

  • Santiago M, Matarredona ER, Machado A, Cano J (1998) Influence of serotoninergic drugs on in vivo dopamine extracellular output in rat striatum. J Neurosci Res 52:591–598

    CAS  PubMed  Google Scholar 

  • Sarhan H, Fillion G (1999) Differential sensitivity of 5-HT1B auto and heteroreceptors. Naunyn-Schmiedeberg’s Arch Pharmacol 360:382–390

    CAS  Google Scholar 

  • Sarhan H, Cloëz-Tayarani I, Massot O, Fillion MP, Fillion G (1999) 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes. Naunyn-Schmiedeberg’s Arch Pharmacol 359:40–47

    CAS  Google Scholar 

  • Sarhan H, Grimaldi B, Hen R, Fillion G (2000) 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes: further evidence using 5-HT moduline, polyclonal 5-HT1B receptor antibodies and 5-HT1B receptor knock-out mice. Naunyn-Schmiedeberg’s Arch Pharmacol 361:12–18

    CAS  Google Scholar 

  • Sari Y, Lefèvre K, Bancila M, Quignon M, Miquel MC, Langlois X, Hamon M, Vergé D (1997) Light and electron microscopic imunocytochemical visualisation of 5-HT1B receptors in the rat brain. Brain Res 760:281–286

    CAS  PubMed  Google Scholar 

  • Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Vergé D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88:899–915

    CAS  PubMed  Google Scholar 

  • Saudou F, Hen R (1994) 5-HT receptor subtypes: molecular and functional diversity. Med Chem Res 4:16–84

    CAS  Google Scholar 

  • Schiavi GB, Brunet S, Rizzi CA, Ladinski H (1994) Identification of serotonin 5-HT4 recognition sites in the porcine caudate nucleus by radioligand binding. Neuropharmacology 33:543–549

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Black CK (1989) The putative 5-HT3 agonist phenylbiguanide induces carrier-mediated release of [3H]dopamine. Eur J Pharmacol 167:309–310

    CAS  PubMed  Google Scholar 

  • Schmidt JC, Fadayel GM, Sullivan CK, Taylor VL (1992) 5-HT2 receptors exert a state dependent regulation of dopaminergic function: studies with MDL 100,907 and the amphetamine analogue, 3,4-methylenedioxymethamphetamine. Eur J Pharmacol 223:65–74

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Kehne JH, Carr AA, Fadayel GM, Humphreys TM, Ketteler HJ, McCloskey TC, Padich RA, Taylor VL, Sorensen SM (1993) Contribution of serotonin neurotoxins to understanding psychiatric disorders: the role of 5-HT2 receptors in schizophrenia and antipsychotic activity. Int Clin Psychopharmacol 8:25–32

    PubMed  Google Scholar 

  • Schmidt CJ, Sullivan CK, Fadayel GM (1994) Blockade of striatal 5-hydroxytryptamine2 receptors reduces the increase in extracellular concentrations of dopamine produced by the amphetamine analogue 3,4-methylenedioxymethamphetamine. J Neurochem 62:1382–1389

    CAS  PubMed  Google Scholar 

  • Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D (2001) Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 21:5916–5924

    CAS  PubMed  Google Scholar 

  • Schoeffter P, Waeber C (1994) 5-Hydroxytryptamine receptors with a 5-HT6 receptor-like profile stimulating adenylyl cyclase activity in pig caudate membranes. Naunyn-Schmiedeberg’s Arch Pharmacol 350:356–360

    CAS  Google Scholar 

  • Schwartz D, Hernandez L, Hoebel BG (1989) Fenfluramine administered systemically or locally increases extracellular serotonin in the lateral hypothalamus as measured by microdialysis. Brain Res 482:261–270

    CAS  PubMed  Google Scholar 

  • Sebben M, Ansanay H, Bockaert J, Dumuis A (1994) 5-HT6 receptors positively coupled to adenylyl cyclase in striatal neurones in culture. NeuroReport 5:2553–2557

    CAS  PubMed  Google Scholar 

  • Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    CAS  PubMed  Google Scholar 

  • Sharp T, Bramwell SR, Clark D, Grahame-Smith DG (1989) In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 53:234–240

    CAS  PubMed  Google Scholar 

  • Shaskan EG, Snyder SH (1970) Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther 175:404–418

    CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Doucet G, Descarries L (1987) Serotonin innervation in adult rat neostriatum. I. Quantified regional distribution. Brain Res 425:85–100

    CAS  PubMed  Google Scholar 

  • Soghomonian JJ, Descarries L, Watkins K (1989) Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study. Brain Res 481:67–86

    CAS  PubMed  Google Scholar 

  • Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 receptor antagonist MDL 100,907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691

    CAS  PubMed  Google Scholar 

  • Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behavior. Behav Brain Sci 9:319–364

    Google Scholar 

  • Soubrié P, Reisine TD, Glowinski J (1984) Functional aspects of serotonin transmission in the basal ganglia: a review and in vivo approach using the push–pull cannula technique. Neuroscience 13:605–625

    PubMed  Google Scholar 

  • Spoont MR (1992) Modulatory role of serotonin in neural information processing: implications for human psychopathology. Psychol Bull 112:330–350

    CAS  PubMed  Google Scholar 

  • Steinbusch HW (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy, vol 3, Classical transmitters and transmitter receptors in the CNS, part II. Elsevier, Amsterdam, pp 68–125

    Google Scholar 

  • Steinbusch HW, Nieuwenhuys R, Verhoftad AA, Van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projections upon the caudo-putamen. A combined cytoarchitectonic, immunocytochemical and retrograde transport study. J Physiol Paris 77:157–174

    CAS  PubMed  Google Scholar 

  • Steward LJ, Bufton KE, Hopkins PC, Davies WE, Barnes NM (1993) Reduced levels of 5-HT3 receptor recognition sites in the putamen of patients with Huntington’s disease. Eur J Pharmacol 242:137–143

    CAS  PubMed  Google Scholar 

  • Steward LJ, Ge J, Stowe RL, Brown DC, Bufton RK, Stokes PRA, Barnes NM (1996) Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro or in vivo. Br J Pharmacol 117:55–62

    CAS  PubMed  Google Scholar 

  • Suchowski CS, Galloway MP (1995) Serotonin receptor subtypes involved in the 5-HT facilitation of dopamine release in the striatum: microdialysis study in vivo. 25th Annual Meeting Society for Neurosciences, San Diego, California, abstract #152.9

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Liu F, Fienberg AA, Nomikos GG, Greengard P (2002) DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proc Natl Acad Sci USA 99:3188–3193

    CAS  PubMed  Google Scholar 

  • Takaki M, Mawe GM, Barasch JM, Gershon MD, Gershon MD (1985) Physiological responses of guinea-pig myenteric neurons secondary to the release of endogenous serotonin by tryptamine. Neuroscience 16:223–240

    CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB (1994) Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. J Neurochem 63:517–524

    CAS  PubMed  Google Scholar 

  • Tao R, Auerbach SB (1995) Involvement of the dorsal raphe but not median raphe nucleus in morphine-induced increases in serotonin release in the rat forebrain. Neuroscience 68:553–561

    CAS  PubMed  Google Scholar 

  • Tecott LH, Maricq AV, Julius D (1993) Nervous system distribution of the serotonin 3 receptor RNAm. Proc Natl Acad Sci USA 90:1430–1434

    CAS  PubMed  Google Scholar 

  • Ternaux JP, Héry F, Bourgoin J, Adrien J, Glowinski J, Hamon M (1977) The topographical distribution of serotonergic terminals in the neostriatum of the rat and the caudate nucleus of the cat. Brain Res 121:311–326

    CAS  PubMed  Google Scholar 

  • Thomas DR (2006) 5-HT5A receptors as a therapeutic target. Pharmacol Ther 111:707–714

    CAS  PubMed  Google Scholar 

  • Thomas DR, Nelson DR, Johnson AM (1987) Biochemical effects of the antidepressant paroxetine, a specific 5-hydroxytryptamine uptake inhibitor. Psychopharmacology 93:193–200

    CAS  PubMed  Google Scholar 

  • Thorré K, Ebinger G, Michotte Y (1998) 5-HT4 receptor involvement in the serotonin-enhanced dopamine efflux from the substantia nigra of the freely moving rat: a microdialysis study. Brain Res 796:117–124

    PubMed  Google Scholar 

  • To ZP, Bonhaus DW, Eglen RM, Jakeman JB (1995) Characterization and distribution of putative 5-HT7 receptors in guinea pig brain. Br J Pharmacol 115:107–116

    CAS  PubMed  Google Scholar 

  • Umbriaco D, Garcia S, Beaulieu C, Descarries L (1995) Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus 5:605–620

    CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Pickel VM (1993) Ultrastructural of serotonin-immunoreactive terminals in the core and shell of the rat nucleus accumbens: cellular substrates for interactions with catecholamine afferents. J Comp Neurol 334:603–617

    PubMed  Google Scholar 

  • Varnas K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in the post mortem human brain using [3H]GR 125743. Brain Res 915:47–57

    CAS  PubMed  Google Scholar 

  • Varnas K, Thomas DR, Tupala E, Tiihonen J, Hall H (2004) Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [3H]SB-269970. Neurosci Lett 367:313–316

    CAS  PubMed  Google Scholar 

  • Varnas K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56:21–28

    PubMed  Google Scholar 

  • Vergé D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy S, Gozlan H, Hamon M (1986) Quantitative autoradiography of multiple 5-HT1 receptors subtypes in the brain of control and 5,7-DHT treated rats. J Neurosci 6:3474–3482

    PubMed  Google Scholar 

  • Vilaró MT, Cortes R, Gerald C, Branchek TA, Palacios JM, Mengod G (1996) Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Mol Brain Res 43:356–360

    PubMed  Google Scholar 

  • Vilaro MT, Cortes R, Mengod G (2005) Serotonin 5-HT4 receptors and their mRNAs in rat and guinea pig brain: distribution and effects of neurotoxic lesions. J Comp Neurol 484:418–439

    CAS  PubMed  Google Scholar 

  • Waeber C, Palacios JM (1989) Serotonin-1 receptor binding sites in the human basal ganglia are decreased in Huntington’s chorea but not in Parkinson’s disease: a quantitative in vitro autoradiography study. Neuroscience 32:337–347

    CAS  PubMed  Google Scholar 

  • Waeber C, Palacios JM (1994) Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. Mol Brain Res 24:199–209

    CAS  PubMed  Google Scholar 

  • Waeber C, Moskowitz MA (1995) [3H]sumatriptan labels both 5-HT1D and 5-HT1F receptor binding sites in the guinea pig brain: an autoradiographic study. Naunyn-Schmiedeberg’s Arch Pharmacol 352:263–275

    CAS  Google Scholar 

  • Waeber C, Sebben M, Nieoullon A, Bockaert J, Dumuis A (1994) Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 33:527–541

    CAS  PubMed  Google Scholar 

  • Waldmeier PC, Delini-Stula AA (1979) Serotonin–dopamine interactions in the nigrostriatal system. Eur J Pharmacol 55:363–373

    CAS  PubMed  Google Scholar 

  • Ward RP, Dorsa DM (1996) Colocalization of serotonin receptor subtypes 5-HT2A, 5-HT2C and 5-HT6 with neuropeptides in rat striatum. J Comp Neurol 370:405–414

    CAS  PubMed  Google Scholar 

  • Ward RP, Dorsa DM (1999) Molecular and behavioral effects mediated by Gs-coupled adenosine A2a, but not serotonin 5-HT4 or 5-HT6 receptors following antipsychotic administration. Neuroscience 89:927–938

    CAS  PubMed  Google Scholar 

  • Ward RP, Hamblin MW, Lachowitcz JE, Hoffman BJ, Sibley DR, Dorsa DM (1995) Localization of serotonin subtype 6 receptor messenger RNA in the rat brain by in situ hybridization histochemistry. Neuroscience 64:1105–1111

    CAS  PubMed  Google Scholar 

  • Wesolowska A (2002) In the search for selective ligands of 5-HT5, 5-HT6 and 5-HT7 serotonin receptors. Pol J Pharmacol 54:327–341

    CAS  PubMed  Google Scholar 

  • West AR, Galloway MP (1996) Desensitization of 5-hydroxytryptamine-facilitated dopamine release in vivo. Eur J Pharmacol 298:241–245

    CAS  PubMed  Google Scholar 

  • Westerink BHC, Tuntler J, Damsma G, Rollema H, De Vries JB (1987) The use of tetrodotoxin for the characterization of drug-enhanced dopamine release in conscious rats studied by brain microdialysis. Naunyn-Schmiedeberg’s Arch Pharmacol 336:502–507

    CAS  Google Scholar 

  • Westerink BH, Hofsteede HM, Tuntler J, de Vries JB (1989) Use of calcium antagonism for the characterization of drug-evoked dopamine release from the brain of conscious rats determined by microdialysis. J Neurochem 52:722–729

    CAS  PubMed  Google Scholar 

  • Westfall C, Tittermary V (1982) Inhibition of the electrically induced release of [3H]dopamine by serotonin from superfused rat striatal slices. Neurosci Lett 28:205–209

    CAS  PubMed  Google Scholar 

  • Westlund KN, Denney RM, Rose RM, Abell CW (1988) Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience 25:439–456

    CAS  PubMed  Google Scholar 

  • Whitaker-Azmitia PM, Clarke C, Azmitia EC (1993) Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal–glial interactions and psychoactive drug mechanism of action. Synapse 14:201–205

    CAS  PubMed  Google Scholar 

  • Williams J, Davies JA (1983) The involvement of 5-hydroxytryptamine in the release of dendritic dopamine from slices of rat substantia nigra. J Pharm Pharmacol 35:734–737

    CAS  PubMed  Google Scholar 

  • Willins DL, Meltzer HY (1998) Serotonin 5-HT2C agonists selectively inhibit morphine-induced dopamine efflux in the nucleus accumbens. Brain Res 781:291–299

    CAS  PubMed  Google Scholar 

  • Wilkinson A, Courtney M, Westlind-Danielsson A, Hallnemo G, Akerman KE (1994) Alaproclate acts as a potent, reversible and noncompetitive antagonist of the NMDA receptor coupled ion flow. J Pharmacol Exp Ther 271:1314–1319

    CAS  PubMed  Google Scholar 

  • White NM (1997) Mnemonic functions of the basal ganglia. Curr Opin Neurobiol 7:164–169

    CAS  PubMed  Google Scholar 

  • Yadid G, Karel P, Kopin IJ, Goldstein DS (1994) Endogenous serotonin stimulates striatal dopamine release in conscious rats. J Pharmacol Exp Ther 270:1158–1165

    CAS  PubMed  Google Scholar 

  • Yamamoto BK, Nash JF, Gudelsky GA (1995) Modulation of methylenedioxymethamphetamine-induced striatal dopamine release by the interaction between serotonin and gamma-aminobutyric acid in the substantia nigra. J Pharmacol Exp Ther 273:1063–1070

    CAS  PubMed  Google Scholar 

  • Yeghiayan SK, Kelley AE (1995) Serotonergic stimulation of the ventrolateral striatum induces orofacial stereotypy. Pharmacol Biochem Behav 52:493–501

    CAS  PubMed  Google Scholar 

  • Yeghiayan SK, Kelley AE, Kula NS, Campbell A, Baldessarini RJ (1997) Role of dopamine in behavioral effects of serotonin microinjected into rat striatum. Pharmacol Biochem Behav 56:251–259

    CAS  PubMed  Google Scholar 

  • Yi SJ, Gifford AN, Johnson KM (1991) Effect of cocaine and 5-HT3 receptor antagonists on 5-HT induce [3H] dopamine release from rat striatal synaptosomes. Eur J Pharmacol 199:185–189

    CAS  PubMed  Google Scholar 

  • Youdim MB, Feldman SC, Pappas GD, Pollard HB (1986) Serotonin metabolism and the nature of monoamine oxidase in squid central nervous system. Brain Res 381:300–304

    CAS  PubMed  Google Scholar 

  • Zangen A, Nakash R, Overstreet DH, Yadid G (2001) Association between depressive behavior and absence of serotonin–dopamine interaction in the nucleus accumbens. Psychopharmacology (Berl) 155:434–439

    CAS  Google Scholar 

  • Zazpe A, Artaiz I, Del Rio J (1994) Role of 5-HT3 receptors in basal K+-evoked dopamine release from rat olfactory tubercule and striatal slices. Br J Pharmacol 113:968–972

    CAS  PubMed  Google Scholar 

  • Zifa E, Fillion G (1992) 5-Hydroxytryptamine receptors. Pharmacol Rev 44:401–458

    CAS  PubMed  Google Scholar 

  • Zhou FC, Lesch KP, Murphy DL (2002) Serotonin uptake into dopamine neurons via dopamine transporters: a compensatory alternative. Brain Res 942:109–119

    CAS  PubMed  Google Scholar 

  • Zhou FM, Liang Y, Salas R, Zhang L, De Biasi M, Dani JA (2005) Corelease of dopamine and serotonin from striatal dopamine terminals. Neuron 46:65–74

    CAS  PubMed  Google Scholar 

  • Zoldan J, Friedberg G, Livneh M, Melamed E (1995) Psychosis in advanced Parkinson’s disease: treatment with ondansetron, a 5-HT3 receptor antagonist. Neurology 45:1305–1308

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from “Centre National de la Recherche Scientifique” and Bordeaux 2 University. The authors report no biomedical financial interest or potential conflicts of interest. The authors thank Dr. Martin Guthrie for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe De Deurwaerdère.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navailles, S., De Deurwaerdère, P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology 213, 213–242 (2011). https://doi.org/10.1007/s00213-010-2029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2029-y

Keywords

Navigation