Skip to main content

Advertisement

Log in

Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, gas chromatography mass spectrometry (GC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) were employed for the metabolic footprinting of a pair of immortalized human uroepithelial cells namely HUC-1 (nontumorigenic) and HUC T-2 (tumorigenic). Both HUC-1 and HUC T-2 cell lines were cultivated in 1 mL of Ham’s F-12 media. Subsequent to 48 h of incubation, 200 μL of cell culture supernatant was protein-precipitated using 1.7 mL of methanol and an aliquot of 1.5 mL of the mixture was separated, dried, trimethylsilyl-derivatized, and analyzed using GC-MS and GC×GC-TOFMS. Metabolic profiles were analyzed using multivariate data analysis techniques to evaluate the changes of the metabolomes. Both GC-MS and GC×GC-TOFMS analyses showed distinct differences in metabolic phenotypes of the normal and tumorigenic human bladder cells (partial least squares-discriminant analysis (PLS-DA) of GC×GC-TOFMS data; two latent variables, R 2 X = 0.418, R 2 Y = 0.977 and Q 2 (cumulative) = 0.852). Twenty metabolites were identified as being statistically different between the two cell types. These metabolites revealed that several key metabolic pathways were perturbed in tumorigenic urothelial cells as compared to the normal cells. Application of GC×GC-TOFMS offered several advantages compared to classical one-dimensional GC-MS which include enhanced chromatographic resolution (without increase in analytical run time), increase in sensitivity, improved identification of metabolites, and also separation of reagent artifacts from the metabolite peaks. Our results reinforced the advantages of GC×GC-TOFMS and the role of metabolomics in characterizing bladder cancer biology using in vitro cell culture models.

Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using GCxGCTOFMS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) CA Cancer J Clin 59:225–249

    Article  Google Scholar 

  2. Lotan Y, Roehrborn CG (2002) J Urol 167:75–79

    Article  Google Scholar 

  3. Kell DB, Brown M, Davey HM, Dunn WB, Spasic I, Oliver SG (2005) Nat Rev Microbiol 3:557–565

    Article  CAS  Google Scholar 

  4. Mapelli V, Olsson L, Nielsen J (2008) Trends Biotechnol 26:490–497

    Article  CAS  Google Scholar 

  5. Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB (2003) Comp Funct Genomics 4:376–391

    Article  CAS  Google Scholar 

  6. Fiehn O (2002) Plant Mol Biol 48:155–171

    Article  CAS  Google Scholar 

  7. Buchholz A, Hurlebaus J, Wandrey C, Takors R (2002) Biomol Eng 19:5–15

    Article  CAS  Google Scholar 

  8. Villas-Boas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Anal Biochem 349:297–305

    Article  CAS  Google Scholar 

  9. Abel CB, Lindon JC, Noble D, Rudd BA, Sidebottom PJ, Nicholson JK (1999) Anal Biochem 270:220–230

    Article  CAS  Google Scholar 

  10. Miccheli AT, Miccheli A, Di Clemente R, Valerio M, Coluccia P, Bizzarri M, Conti F (2006) Biochim Biophys Acta 1760:1723–1731

    CAS  Google Scholar 

  11. Dunn WB, Brown M, Worton SA, Crocker IP, Broadhurst D, Horgan R, Kenny LC, Baker PN, Kell DB, Heazell AE (2009) Placenta 30:974–980

    Article  CAS  Google Scholar 

  12. Pope GA, MacKenzie DA, Defernez M, Aroso MA, Fuller LJ, Mellon FA, Dunn WB, Brown M, Goodacre R, Kell DB, Marvin ME, Louis EJ, Roberts IN (2007) Yeast 24:667–679

    Article  CAS  Google Scholar 

  13. Pasikanti KK, Ho PC, Chan EC (2008) J Chromatogr B Analyt Technol Biomed Life Sci 871:202–211

    Article  CAS  Google Scholar 

  14. Want EJ, Nordstrom A, Morita H, Siuzdak G (2007) J Proteome Res 6:459–468

    Article  CAS  Google Scholar 

  15. Almstetter MF, Appel IJ, Gruber MA, Lottaz C, Timischl B, Spang R, Dettmer K, Oefner PJ (2009) Anal Chem 81:5731–5739

    Article  CAS  Google Scholar 

  16. Li X, Xu Z, Lu X, Yang X, Yin P, Kong H, Yu Y, Xu G (2009) Anal Chim Acta 633:257–262

    Article  CAS  Google Scholar 

  17. Ralston-Hooper K, Hopf A, Oh C, Zhang X, Adamec J, Sepulveda MS (2008) Aquat Toxicol 88:48–52

    Article  CAS  Google Scholar 

  18. Mohler RE, Dombek KM, Hoggard JC, Pierce KM, Young ET, Synovec RE (2007) Analyst 132:756–767

    Article  CAS  Google Scholar 

  19. Shellie RA, Welthagen W, Zrostlikova J, Spranger J, Ristow M, Fiehn O, Zimmermann R (2005) J Chromatogr A 1086:83–90

    Article  CAS  Google Scholar 

  20. Cortes HJ, Winniford B, Luong J, Pursch M (2009) J Sep Sci 32:883–904

    Article  CAS  Google Scholar 

  21. Ong RC, Marriott PJ (2002) J Chromatogr Sci 40:276–291

    CAS  Google Scholar 

  22. Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O (2005) Metabolomics 1:65–73

    Article  CAS  Google Scholar 

  23. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) Bioinformatics 21:1635–1638

    Article  CAS  Google Scholar 

  24. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) Nucleic Acids Res 35:D521–D526

    Article  CAS  Google Scholar 

  25. Mendes P (2002) Brief Bioinform 3:134–145

    Article  CAS  Google Scholar 

  26. Pasikanti KK, Ho PC, Chan EC (2008) Rapid Commun Mass Spectrom 22:2984–2992

    Article  CAS  Google Scholar 

  27. Koek MM, Muilwijk B, van Stee LL, Hankemeier T (2008) J Chromatogr A 1186:420–429

    Article  CAS  Google Scholar 

  28. Pasikanti KK, Esuvaranathan K, Ho PC, Mahendran R, Kamaraj R, Wu QH, Chiong E, Chan EC (2010) J Proteome Res 9:2988–2995

    Article  CAS  Google Scholar 

  29. Dalluge J, Beens J, Brinkman UA (2003) J Chromatogr A 1000:69–108

    Article  CAS  Google Scholar 

  30. Donato P, Tranchida PQ, Dugo P, Dugo G, Mondello L (2007) J Sep Sci 30:508–526

    Article  CAS  Google Scholar 

  31. Ong R, Marriott P, Morrison P, Haglund P (2002) J Chromatogr A 962:135–152

    Article  CAS  Google Scholar 

  32. Begley P, Francis-McIntyre S, Dunn WB, Broadhurst DI, Halsall A, Tseng A, Knowles J, Goodacre R, Kell DB (2009) Anal Chem 81:7038–7046

    Article  CAS  Google Scholar 

  33. Oh C, Huang X, Regnier FE, Buck C, Zhang X (2008) J Chromatogr A 1179:205–215

    Article  CAS  Google Scholar 

  34. Holmes E, Antti H (2002) Analyst 127:1549–1557

    Article  CAS  Google Scholar 

  35. Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, Gottfries J, Moritz T, Trygg J (2008) Anal Chem 80:115–122

    Article  CAS  Google Scholar 

  36. Trygg J, Holmes E, Lundstedt T (2007) J Proteome Res 6:469–479

    Article  CAS  Google Scholar 

  37. Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, Ghikonti I, Manikas K, Kastriotis I (2004) Eur Urol 46:200–208

    Article  CAS  Google Scholar 

  38. Ioachim E, Michael M, Salmas M, Michael MM, Stavropoulos NE, Malamou-Mitsi V (2006) Urol Int 77:255–263

    Article  CAS  Google Scholar 

  39. Griffin JL, Shockcor JP (2004) Nat Rev Cancer 4:551–561

    Article  CAS  Google Scholar 

  40. Dang CV, Semenza GL (1999) Trends Biochem Sci 24:68–72

    Article  CAS  Google Scholar 

  41. Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Biochim Biophys Acta 1555:14–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments of research support

This study was supported by the National University of Singapore (NUS) grant R-148-000-100-112 provided to E.C.Y.C and National Medical Research Council grant R-176-000-119-213 provided to K.E., P.C.H., R.M., and E.C.Y.C. GC × GC-TOFMS was kindly sponsored by the NUS grant R-279-000-249-646. K.K.P is supported by NUS President's Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chun Yong Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

 (PDF 675 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasikanti, K.K., Norasmara, J., Cai, S. et al. Metabolic footprinting of tumorigenic and nontumorigenic uroepithelial cells using two-dimensional gas chromatography time-of-flight mass spectrometry. Anal Bioanal Chem 398, 1285–1293 (2010). https://doi.org/10.1007/s00216-010-4055-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4055-3

Keywords

Navigation