Skip to main content
Log in

GC–TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cultured cell lines are useful models in biomedical research that characterize metabolic responses to various stimuli (e.g., pathogens, toxins, or drugs/chemicals) and explore the underlying mechanisms. However, data from cell metabolomic studies must be normalized to the amount of cells, which is dependent on diverse treatments. The currently used methods of cell counting and protein assay involve extra work and delay the quenching of intracellular metabolism. To develop a convenient, alternative approach, in this study, intracellular metabolites were extracted from a series amount of cultured adherent cells and profiled by gas chromatography–time-of-flight mass spectrometry (GC–TOFMS). The GC–TOFMS signal intensities for 11 intracellular markers present in two different cell lines showed good linearity with the protein content, with inositol and pantothenate most promising (correlation coefficient > 0.970). Despite the various amounts of cells, the data normalized to the metabolic markers and protein amounts showed similar effectiveness, resulted in better separation of the two cell lines, closer clustering within each group(cell line) on a principal components analysis scores plot, and had lower relative standard deviations for intracellular metabolites than those of the non-normalized data, suggesting that these markers were effective indicators of cell amounts and independent of cell lines.

A schematic strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mamas M, Dunn WB, Neyses L, Goodacre R (2011) The role of metabolites and metabolomics in clinically applicable biomarkers of disease. Arch Toxicol 85:5–17. doi:10.1007/s00204-010-0609-6

    Article  CAS  Google Scholar 

  2. Cuperlovic-Culf M, Barnett DA, Culf AS, Chute I (2010) Cell culture metabolomics: applications and future directions. Drug Discov Today 15(15–16):610–621

    Article  CAS  Google Scholar 

  3. Khoo Soo Hean G, Al-Rubeai M (2007) Metabolomics as a complementary tool in cell culture. Biotechnol Appl Biochem 47(2):71

    Article  Google Scholar 

  4. Varghese RS, Cheema A, Cheema P, Bourbeau M, Tuli L, Zhou B, Jung M, Dritschilo A, Ressom HW (2010) Analysis of LC-MS data for characterizing the metabolic changes in response to radiation. J Proteome Res 9(5):2786–2793

    Article  CAS  Google Scholar 

  5. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) Metabolic effects of influenza virus infection in cultured animal cells: intra- and extracellular metabolite profiling. BMC Syst Biol 4:61

    Article  Google Scholar 

  6. Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L (2010) Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 6:364

    Article  Google Scholar 

  7. Bayet-Robert M, Morvan D, Chollet P, Barthomeuf C (2010) Pharmacometabolomics of docetaxel-treated human MCF7 breast cancer cells provides evidence of varying cellular responses at high and low doses. Breast Cancer Res Treat 120(3):613–626

    Article  CAS  Google Scholar 

  8. Klawitter J, Shokati T, Moll V, Christians U (2010) Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res 12(2):R16

    Article  Google Scholar 

  9. Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Günther UL, Cordes N (2009) Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS ONE 4(1):e4251

    Article  Google Scholar 

  10. Ramanathan A, Schreiber SL (2009) Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106(52):22229–22232

    Article  CAS  Google Scholar 

  11. Heinemann M, Zenobi R (2011) Single cell metabolomics. Curr Opin Biotechnol 22:26–31. doi:10.1016/j.copbio.2010.09.008

    Article  CAS  Google Scholar 

  12. Dettmer K, Nurnberger N, Kaspar H, Gruber MA, Almstetter MF, Oefner PJ (2011) Metabolite extraction from adherently growing mammalian cells for metabolomics studies: optimization of harvesting and extraction protocols. Anal Bioanal Chem 399:1127–1139. doi:10.1007/s00216-010-4425-x

    Article  CAS  Google Scholar 

  13. Duarte IF, Marques J, Ladeirinha AF, Rocha C, Lamego I, Calheiros R, Silva TM, Marques MP, Melo JB, Carreira IM, Gil AM (2009) Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 81(12):5023–5032

    Article  CAS  Google Scholar 

  14. Teng Q, Huang W, Collette TW, Ekman DR, Tan C (2008) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5(2):199–208

    Article  Google Scholar 

  15. Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ (2009) Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem 81(1):174–183

    Article  CAS  Google Scholar 

  16. Shin MH, Lee do Y, Liu KH, Fiehn O, Kim KH (2010) Evaluation of sampling and extraction methodologies for the global metabolic profiling of Saccharophagus degradans. Anal Chem 82(15):6660–6666

    Article  CAS  Google Scholar 

  17. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404(2):155–164

    Article  CAS  Google Scholar 

  18. Ritter JB, Genzel Y, Reichl U (2008) Simultaneous extraction of several metabolites of energy metabolism and related substances in mammalian cells: optimization using experimental design. Anal Biochem 373(2):349–369

    Article  CAS  Google Scholar 

  19. Danielsson AP, Moritz T, Mulder H, Spegel P (2010) Development and optimization of a metabolomic method for analysis of adherent cell cultures. Anal Biochem 404(1):30–39

    Article  CAS  Google Scholar 

  20. Teahan O, Bevan CL, Waxman J, Keun HC (2010) Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol. doi:10.1016/j.biocel.2010.07.003

    Google Scholar 

  21. Lyer VV, Ovacik MA, Androulakis IP, Roth CM, Ierapetritou MG (2010) Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes. Toxicol Appl Pharmacol 248(3):165–177

    Article  Google Scholar 

  22. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T (2005) Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem 77(24):8086–8094

    Article  Google Scholar 

  23. Jonsson P, Johansson AI, Gullberg J, Trygg J, Jiye A, Grung B, Marklund S, Sjostrom M, Antti H, Moritz T (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem 77(17):5635–5642

    Article  CAS  Google Scholar 

  24. Eker C, Rydell R, Svanberg K, Andersson-Engels S (2001) Multivariate analysis of laryngeal fluorescence spectra recorded in vivo. Lasers Surg Med 28(3):259–266

    Article  CAS  Google Scholar 

  25. Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6(2):469–479

    Article  CAS  Google Scholar 

  26. Horio M, Yamauchi A, Moriyama T, Imai E, Orita Y (1997) Osmotic regulation of amino acids and system A transport in Madin-Darby canine kidney cells. Am J Physiol 272(3 Pt 1):C804–C809

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the National Key New Drug Creation Special Programs (2009ZX09304-001 and 2009ZX09502-004), National Natural Science Foundation of the People’s Republic of China (81072692, 30630076, 40821140541, and 30870086), the National 11th 5-Year Technology Supporting Program of the People’s Republic of China (No. 2006BAI08B04), the Jiangsu Nature Science Fund (BK2008038), and the National “973” Key Fundamental programs (2011CB505300 and 2011CB505303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiye Aa or Guangji Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, B., Aa, J., Wang, G. et al. GC–TOFMS analysis of metabolites in adherent MDCK cells and a novel strategy for identifying intracellular metabolic markers for use as cell amount indicators in data normalization. Anal Bioanal Chem 400, 2983–2993 (2011). https://doi.org/10.1007/s00216-011-4981-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4981-8

Keywords

Navigation