Skip to main content
Log in

Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is the fourth most common cause of death from cancer in the world. The limitations of the currently available methods and biomarkers for CRC management highlight the necessity of finding novel markers. Metabonomics can be used to search for potential markers that can provide molecular insight into human CRC. The emergence of two-dimensional gas chromatography time of flight mass spectrometry (GC × GC/TOFMS) has comprehensively enhanced the metabolic space coverage of conventional GC/MS. In this study, a GC × GC/TOFMS was developed for the tissue-based global metabonomic profiling of CRC. A Pegasus GC × GC/TOFMS (Leco Corp., St. Joseph, MI, USA) system comprising an Agilent 7890 GC and Pegasus IV TOFMS was used for this purpose. An Agilent DB-1 (30 m × 250 μm × 0.25 μm) fused silica capillary column and a Restek Rxi®-17 (1 m × 100 μm × 0.10 μm) fused silica capillary column were used as the primary and secondary columns, respectively. The method was applied for global metabonomic profiling of matched CRC and normal tissues (n = 63) obtained from 31 CRC patients during surgery. An attempt was also made to compare GC × GC/TOFMS with GC/MS and NMR in similar application. The results showed that the metabotype associated with CRC is distinct from that of normal tissue and led to the identification of chemically diverse marker metabolites. Metabolic pathway mapping suggested deregulation of various biochemical processes such as glycolysis, Krebs cycle, osmoregulation, steroid biosynthesis, eicosanoid biosynthesis, bile acid biosynthesis, lipid, amino acid and nucleotide metabolism.

Workflow of GCGC/TOFMS metabonomic profiling of human colorectal cancer

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2008) GLOBOCAN 2008 v1.2, Cancer incidence and mortality worldwide. IARC, Lyon, France. Available from: http://globocan.iarc.fr

  2. Tey J, Baggarley S, Lee KM (2008) Cancer care in Singapore. Biomed Imaging Interv J 4:e38

    Article  CAS  Google Scholar 

  3. Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL (2006) Proteomic analysis of colorectal cancer reveals alterations in metabolic pathways: mechanism of tumorigenesis. Mol Cell Proteomics 5(6):1119–1130

    Article  CAS  Google Scholar 

  4. Longley DB, Allen WL, Johnston PG (2006) Drug resistance, predictive markers and pharmacogenomics in colorectal cancer. Biochim Biophys Acta 1766(2):184–196

    CAS  Google Scholar 

  5. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29(11):1181–1189

    Article  CAS  Google Scholar 

  6. Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genom 2(3):155–168

    Article  CAS  Google Scholar 

  7. Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130(5):606–625

    Article  CAS  Google Scholar 

  8. Lindon JC, Nicholson JK, Holmes E (2007) The handbook of metabonomics and metabolomics. Elsevier, The Netherlands

    Google Scholar 

  9. Adahchour M, Beens J, Brinkman UA (2008) Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A 1186(1–2):67–108

    Article  CAS  Google Scholar 

  10. Beens J, Adahchour M, Vreuls RJ, van Altena K, Brinkman UA (2001) Simple, non-moving modulation interface for comprehensive two-dimensional gas chromatography. J Chromatogr A 919:127–132

    Article  CAS  Google Scholar 

  11. Khummueng W, Harynuk J, Marriott PJ (2006) Modulation ratio in comprehensive two-dimensional gas chromatography. Anal Chem 78(13):4578–4587

    Article  CAS  Google Scholar 

  12. Dimandja JM, Clouden GC, Colon I, Focant JF, Cabey WV, Parry RC (2003) Standardized test mixture for the characterization of comprehensive two-dimensional gas chromatography columns: the Phillips mix. J Chromatogr A 1019(1–2):261–272

    Article  CAS  Google Scholar 

  13. Ryan D, Morrison P, Marriott P (2005) Orthogonality considerations in comprehensive two-dimensional gas chromatography. J Chromatogr A 1071(1–2):47–53

    Article  CAS  Google Scholar 

  14. Koek MM, Muilwijk B, van Stee LL, Hankemeier T (2008) Higher mass loadability in comprehensive two-dimensional gas chromatography–mass spectrometry for improved analytical performance in metabolomics analysis. J Chromatogr A 1186(1–2):420–429

    Article  CAS  Google Scholar 

  15. Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE (2006) Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal Chem 78(8):2700–2709

    Article  CAS  Google Scholar 

  16. Pasikanti KK, Ho PC, Chan EC (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 871(2):202–211

    Article  CAS  Google Scholar 

  17. Sinha AE, Hope JL, Prazen BJ, Nilsson EJ, Jack RM, Synovec RE (2004) Algorithm for locating analytes of interest based on mass spectral similarity in GC × GC-TOF-MS data: analysis of metabolites in human infant urine. J Chromatogr A 1058(1–2):209–215

    CAS  Google Scholar 

  18. Welthagen W, Shellie RA, Spranger J, Ristow M, Zimmermann R (2005) Comprehensive two dimensional gas chromatography–time of flight mass spectrometry (GC × GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1:57–65

    Article  Google Scholar 

  19. Chan EC, Koh PK, Mal M, Cheah PY, Eu KW, Backshall A, Cavill R, Nicholson JK, Keun HC (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361

    Article  CAS  Google Scholar 

  20. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M, Kind T, Niesporek S, Noske A, Buckendahl A, Dietel M, Fiehn O (2008) Metabolite profiling of human colon carcinoma—deregulation of TCA cycle and amino acid turnover. Mol Canc 7:72

    Article  Google Scholar 

  21. Ong ES, Zou L, Li S, Cheah PY, Eu KW, Ong CN (2010) Metabolic profiling in colorectal cancer reveals signature metabolic shifts during tumorigenesis. Mol Cell Proteomics. doi:10.1074/mcp.M900551-MCP200

  22. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, Kinoshita T, Saito N, Ochiai A, Tomita M, Esumi H, Soga T (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69(11):4918–4925

    Article  CAS  Google Scholar 

  23. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue):D603–D610

    Article  CAS  Google Scholar 

  24. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  25. Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    Article  CAS  Google Scholar 

  26. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  CAS  Google Scholar 

  27. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ, Heffron G, Metallo CM, Muranen T, Sharfi H, Sasaki AT, Anastasiou D, Mullarky E, Vokes NI, Sasaki M, Beroukhim R, Stephanopoulos G, Ligon AH, Meyerson M, Richardson AL, Chin L, Wagner G, Asara JM, Brugge JS, Cantley LC, Vander Heiden MG (2011) Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 43(9):869–874

    Article  CAS  Google Scholar 

  28. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K, Sethumadhavan S, Woo HK, Jang HG, Jha AK, Chen WW, Barrett FG, Stransky N, Tsun ZY, Cowley GS, Barretina J, Kalaany NY, Hsu PP, Ottina K, Chan AM, Yuan B, Garraway LA, Root DE, Mino-Kenudson M, Brachtel EF, Driggers EM, Sabatini DM (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476(7360):346–350

    Article  CAS  Google Scholar 

  29. Bismut H, Caron M, Coudray-Lucas C, Capeau J (1995) Glucose contribution to nucleic acid base synthesis in proliferating hepatoma cells: a glycine-biosynthesis-mediated pathway. Biochem J 308(Pt 3):761–767

    CAS  Google Scholar 

  30. Snell K, Natsumeda Y, Weber G (1987) The modulation of serine metabolism in hepatoma 3924A during different phases of cellular proliferation in culture. Biochem J 245(2):609–612

    CAS  Google Scholar 

  31. Kit S (1955) The biosynthesis of free glycine and serine by tumors. Cancer Res 15(11):715–718

    CAS  Google Scholar 

  32. Fu TF, Rife JP, Schirch V (2001) The role of serine hydroxymethyltransferase isozymes in one-carbon metabolism in MCF-7 cells as determined by (13)C NMR. Arch Biochem Biophys 393(1):42–50

    Article  CAS  Google Scholar 

  33. Lipkin M, Yang K, Edelmann W, Xue L, Fan K, Risio M, Newmark H, Kucherlapati R (1999) Preclinical mouse models for cancer chemoprevention studies. Ann N Y Acad Sci 889:14–19

    Article  CAS  Google Scholar 

  34. Hentosh P, Yuh SH, Elson CE, Peffley DM (2001) Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog 32(3):154–166

    Article  CAS  Google Scholar 

  35. Wachtershauser A, Akoglu B, Stein J (2001) HMG-CoA reductase inhibitor mevastatin enhances the growth inhibitory effect of butyrate in the colorectal carcinoma cell line Caco-2. Carcinogenesis 22(7):1061–1067

    Article  CAS  Google Scholar 

  36. Rao CV, Newmark HL, Reddy BS (1998) Chemopreventive effect of squalene on colon cancer. Carcinogenesis 19(2):287–290

    Article  CAS  Google Scholar 

  37. Garber K (2006) Energy deregulation: licensing tumors to grow. Science 312(5777):1158–1159

    Article  CAS  Google Scholar 

  38. Reddy BS (1986) Amount and type of dietary fat and colon cancer: animal model studies. Prog Clin Biol Res 222:295–309

    CAS  Google Scholar 

  39. Reddy BS (1992) Dietary fat and colon cancer: animal model studies. Lipids 27(10):807–813

    Article  CAS  Google Scholar 

  40. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283(12):7309–7313

    Article  CAS  Google Scholar 

  41. Baker H, Frank O, Chen T, Feingold S, DeAngelis B, Baker ER (1981) Elevated vitamin levels in colon adenocarcinoma as compared with metastatic liver adenocarcinoma from colon primary and normal adjacent tissue. Cancer 47(12):2883–2886

    Article  CAS  Google Scholar 

  42. Bosco MC, Rapisarda A, Massazza S, Melillo G, Young H, Varesio L (2000) The tryptophan catabolite picolinic acid selectively induces the chemokines macrophage inflammatory protein-1 alpha and -1 beta in macrophages. J Immunol 164(6):3283–3291

    CAS  Google Scholar 

  43. Kashfi K, Rigas B (2005) Is COX-2 a ‘collateral’ target in cancer prevention? Biochem Soc Trans 33(Pt 4):724–727

    CAS  Google Scholar 

  44. Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T (1995) Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 55(17):3785–3789

    CAS  Google Scholar 

  45. Shureiqi I, Lippman SM (2001) Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 61(17):6307–6312

    CAS  Google Scholar 

  46. Smith WL (1992) Prostanoid biosynthesis and mechanisms of action. Am J Physiol 263(2 Pt 2):F181–F191

    CAS  Google Scholar 

  47. Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN, Masferrer J, Koki AT (2000) COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89(12):2637–2645

    Article  CAS  Google Scholar 

  48. Soumaoro LT, Iida S, Uetake H, Ishiguro M, Takagi Y, Higuchi T, Yasuno M, Enomoto M, Sugihara K (2006) Expression of 5-lipoxygenase in human colorectal cancer. World J Gastroenterol 12(39):6355–6360

    CAS  Google Scholar 

Download references

Acknowledgement

M.M. is supported by NUS Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chun Yong Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mal, M., Koh, P.K., Cheah, P.Y. et al. Metabotyping of human colorectal cancer using two-dimensional gas chromatography mass spectrometry. Anal Bioanal Chem 403, 483–493 (2012). https://doi.org/10.1007/s00216-012-5870-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5870-5

Keywords

Navigation