Skip to main content
Log in

Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Monepantel (MOP) belongs to a new class of anthelmintic drugs known as aminoacetonitrile derivatives. It was approved for use in veterinary practice in Czech Republic in 2011. So far, biotransformation and transport of MOP in target animals have been studied insufficiently, although the study of metabolic pathways of anthelmintics is very important for the efficacy of safety of therapy and evaluation of the risk of drug–drug interactions. The aim of this study was to identify MOP metabolites and to suggest the metabolic pathways of MOP in sheep. For this purpose, primary culture of ovine hepatocytes was used as a model in vitro system. After incubation, medium samples and homogenates of hepatocytes were extracted separately using solid-phase extraction. Analysis was performed using a hybrid quadrupole-time-of-flight analyzer with respect to high mass accuracy measurements in full scan and tandem mass spectra for the confirmation of an elemental composition. The obtained results revealed S-oxidation to sulfoxide and sulfone and arene hydroxylation as MOP phase I biotransformations. From phase II metabolites, MOP glucuronides, sulfates, and acetylcysteine conjugates were found. Based on the obtained results, a scheme of the metabolic pathway of MOP in sheep has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AADs:

Aminoacetonitrile derivatives

BSA:

Bovine serum albumin

DMSO:

Dimethyl sulfoxide

EGTA:

Ethylene glycol-bis (β-aminoethyl ether) N,N,N´,N´-tetraacetic acid

ESI:

Electrospray ionization

HPLC:

High-performance liquid chromatography

MOP:

Monepantel

MOP.OH:

Monepantel with hydroxylation

MOP.SO:

Monepantel sulfoxide

MOP.SO.OH:

Monepantel sulfoxide with hydroxylation

MOP.SO2 :

Monepantel sulfone

MOP.SO2.OC6H9O6 :

Glucuronide of hydroxylated monepantel sulfone

MOP.SO2.OH:

Monepantel sulfone with hydroxylation

MOP.SO2.OH.OC6H9O6 :

Glucuronide of dihydroxylated monepantel sulfone

MOP.SO2.OSO3H:

Sulfate of hydroxylated monepantel sulfone

MOP.SO2.SC5H8NO3 :

Monepantel sulfone conjugated with acetylcysteine

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NMR:

Nuclear magnetic resonance

PPTS:

Pyridinium p-toluenesulfonate

QqTOF:

Quadrupole-time-of-flight analyzer

RP:

Reversed-phase

SPE:

Solid-phase extraction

t-BuOK:

Potassium tert-butoxide

THF:

Tetrahydrofuran

THP:

Tetrahydropyran-2-yl

UHPLC:

Ultrahigh-performance liquid chromatography

References

  1. Leathwick DM (2012) Modelling the benefits a new class of anthelmintic in combination. Vet Parasitol 186:93–100

    Article  CAS  Google Scholar 

  2. Papadopoulos E (2008) Anthelmintic resistance in sheep nematodes. Small Rumin Res 76:99–103

    Article  Google Scholar 

  3. Gobert NG, Jones MK (2008) Discovering new schistosome drug targets: the role of transcriptomics. Curr Drug Targets 9:922–930

    Article  CAS  Google Scholar 

  4. Kaplan RM (2004) Drug resistance in nematodes of veterinary importance: a status report. Trends Parasitol 20:477–481

    Article  CAS  Google Scholar 

  5. Kaminsky R, Ducray P, Jung M, Clover R, Rufener L, Bouvier J, Weber SS, Wenger A, Wieland-Berghausen S, Goebel T, Gauvry N, Pautrat F, Skripsky T, Froelich O, Komoin-Oka C, Westlund B, Sluder A, Mäser P (2008) A new class of anthelmintics effective against drug-resistant nematodes. Nature 452:176–180

    Article  CAS  Google Scholar 

  6. Ducray P, Gauvry N, Pautrat F, Goebel T, Fruechtel J, Desaules Y, Weber SS, Bouvier J, Wagner T, Froelich O, Kaminsky R (2008) Discovery of amino-acetonitrile derivatives, a new class of synthetic anthelmintic compounds. Bioorg Med Chem Lett 18:2935–2938

    Article  CAS  Google Scholar 

  7. Kinsella B, Byrne P, Cantwell H, McCormack M, Furey A, Danaher M (2011) Determination of the new anthelmintic monepantel and its sulfone metabolite in milk and muscle using a UHPLC-MS/MS and QuEChERS method. J Chromatogr B 879:3707–3713

    Article  CAS  Google Scholar 

  8. Karadzovska D, Seewald W, Browning A, Smal M, Bouvier J, Giraudel JM (2008) Pharmacokinetics of monepantel and its sulfone metabolite, monepantel sulfone, after intravenous and oral administration in sheep. J Vet Pharmacol Ther 32:359–367

    Article  Google Scholar 

  9. Holčapek M, Kolářová L, Nobilis M (2008) High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem 391:59–78

    Article  Google Scholar 

  10. Vokřál I, Jedličková V, Jirásko R, Stuchlíková L, Bártíková H, Skálová L, Lamka J, Holčapek M, Szotáková B (2011) Metabolic fate of ivermectin in host (Ovis aries) and parasite (Haemonchus contortus). Vet Parasitol 185:168–174

    Article  Google Scholar 

  11. Vokřál I, Jirásko R, Jedličková V, Bártíková H, Skálová L, Lamka J, Holčapek M, Szotáková B (2012) The inability of tapeworm Hymenolepis diminuta and fluke Dicrocoelium dendriticum to metabolize praziquantel. Vet Parasitol 185:168–174

    Article  Google Scholar 

  12. Holčapek M, Jirásko R, Lísa M (2012) Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A 1259:3–15

    Article  Google Scholar 

  13. Liu DQ, Hop CE (2005) Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J Pharm Biomed Anal 37:1–18

    Article  Google Scholar 

  14. Liu X, Jia L (2007) The conduct of drug metabolism studies considered good practice (I): analytical systems and in vivo studies. Curr Drug Metab 8:815–821

    Article  CAS  Google Scholar 

  15. Jirásko R, Holčapek M, Nobilis M (2011) Identification of phase I and phase II metabolites of benfluron and dimefluron in rat urine using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp 25:2153–2162

    Article  Google Scholar 

  16. Staack RF, Hopfgartner G (2007) New analytical strategies in studying drug metabolism. Anal Bioanal Chem 388:1365–1380

    Article  CAS  Google Scholar 

  17. Berry MN, Edwards AM, Barritt GJ (1991) Laboratory techniques in biochemistry and molecular biology. In: Burdow RH, van Knippenberg PH (eds) Isolated hepatocytes preparation, properties and applications. Elsevier Science, Amsterdam, pp 15–35

    Google Scholar 

  18. Baliharová V, Velík J, Savlík M, Szotáková B, Lamka J, Tahotná L, Skálová L (2004) The effects of fenbendazole, flubendazole and mebendazole on activities of hepatic cytochromes P450 in pig. J Vet Pharmacol Ther 27:85–90

    Article  Google Scholar 

  19. Velík J, Baliharová V, Skálová L, Szotáková B, Wsól V, Lamka J (2003) Stereospecific biotransformation of albendazole in muflon and rat-isolated hepatocytes. J Vet Pharmacol Ther 26:297–302

    Article  Google Scholar 

  20. Montesissa C, Anfossi P, Van’t Klooster G, Mengelers M (1996) The use of cultured hepatocytes from goats and cattle to investigate xenobiotic oxidative metabolism. Vet Res Commun 20:449–460

    Article  CAS  Google Scholar 

  21. Parkinson A (2001) In: Klaassen CD (ed) Casarett & Doull’s toxicology—the basic science of poisons. New York, McGraw-Hill

    Google Scholar 

  22. Nobilis M, Anzenbacher P, Pastera J, Svoboda Z, Hrubý K, Květina J, Ubik K, Trejtnar F (1996) Study of the biotransformation of a potential benzocfluorene antineoplastic using high-performance liquid chromatography with high-speed-scanning ultraviolet detection. J Chromatogr B 681:143–151

    Article  CAS  Google Scholar 

  23. Holčapek M, Jirásko R, Lísa M (2010) Basic rules for the interpretation of atmospheric pressure ionization mass spectra of small molecules. J Chromatogr A 25:3908–3921

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Czech Science Foundation (GA ČR, grant No. P502/10/0217), by the Grant Agency of Charles University (GA UK, grant No. 673612/B-CH/2012) and by the Charles University in Prague (research projects SVV 265 004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Skálová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuchlíková, L., Jirásko, R., Vokřál, I. et al. Investigation of the metabolism of monepantel in ovine hepatocytes by UHPLC/MS/MS. Anal Bioanal Chem 405, 1705–1712 (2013). https://doi.org/10.1007/s00216-012-6584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6584-4

Keywords

Navigation