Skip to main content

Advertisement

Log in

Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective: The purpose of the present study was to elucidate the cytochrome P450 (P450) isoform(s) involved in the metabolism of loperamide (LOP) to N-demethylated LOP (DLOP) in human liver microsomes. Methods: Three established approaches were used to identify the P450 isoforms responsible for LOP N-demethylation using human liver microsomes and cDNA-expressed P450 isoforms: (1) correlation of LOP N-demethylation activity with marker P450 activities in a panel of human liver microsomes, (2) inhibition of enzyme activity by P450-selective inhibitors, and (3) measurement of DLOP formation by cDNA-expressed P450 isoforms. The relative contribution of P450 isoforms involved in LOP N-demethylation in human liver microsomes were estimated by applying relative activity factor (RAF) values. Results: The formation rate of DLOP showed biphasic kinetics, suggesting the involvement of multiple P450 isoforms. Apparent Km and Vmax values were 21.1 μM and 122.3 pmol/min per milligram of protein for the high-affinity component and 83.9 μM and 412.0 pmol/min per milligram of protein for the low-affinity component, respectively. Of the cDNA-expressed P450 s tested, CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyzed LOP N-demethylation. LOP N-demethylation was significantly inhibited when coincubated with quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4 inhibitor) by 40 and 90%, respectively, but other chemical inhibitors tested showed weak or no significant inhibition. DLOP formation was highly correlated with CYP3A4-catalyzed midazolam 1-hydroxylation (rs=0.829; P<0.01), CYP2B6-catalzyed 7-ethoxy-4-trifluoromethylcoumarin O-deethylation (rs=0.691; P<0.05), and CYP2C8-catalyzed paclitaxel 6α-hydroxylation (rs=0.797; P<0.05). Conclusion: CYP2B6, CYP2C8, CYP2D6, and CYP3A4 catalyze LOP N-demethylation in human liver microsomes, and among them, CYP2C8 and CYP3A4 may play a crucial role in LOP metabolism at the therapeutic concentrations of LOP. Coadministration of these P450 inhibitors may cause drug interactions with LOP. However, the clinical significance of potential interaction of LOP metabolism by CYP2C8 and CYP3A4 inhibitors should be studied further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

P450:

Cytochrome P450

LOP:

Loperamide

DLOP:

Desmethylloperamide

7-EFC:

7-Ethoxy-4-trifluoromethylcoumarin

DDC:

Diethyldithiocarbamate

References

  1. Camilleri M (1998) Therapeutic approach to the patient with irritable bowel syndrome. Am J Med 107:27S–32S

    Article  Google Scholar 

  2. Sach JA, Chang L (2002) Irritable bowel syndrome. Curr Treat Options Gastroenterol 5:267–278

    PubMed  Google Scholar 

  3. Fogel R (2001) Fecal incontinence. Curr Treat Options Gastroenterol 4:261–266

    PubMed  Google Scholar 

  4. Schiller LR (2003) Treatment of fecal incontinence. Curr Treat Options Gastroenterol 6:319–327

    PubMed  Google Scholar 

  5. De Haven-Hudkins DL, Cowan A, Cortes Burgos L, Daubert JD, Cassel JA, DeHaven RN, Kehner GB, Kumar V, Park-Wyllie LY, Antoniou T (2002) Antipruritic and antihyperalgesic actions of loperamide and analogs. Life Sci 71:2787–2796

    Article  PubMed  Google Scholar 

  6. De Haven-Hudkins DL, Burgos LC, Cassel JA, Daubert JD, DeHaven RN, Mansson E, Nagasaka H, Yu G, Yaksh T (1999) Loperamide (ADL 2-1294), an opioid antihyperalgesic agent with peripheral selectivity. J Pharmacol Exp Ther 289:494–502

    PubMed  Google Scholar 

  7. Schinkel AH, Wagenaar E, Mol CA, van Deemter L (1996) P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Google Scholar 

  8. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68:231–237

    Article  CAS  PubMed  Google Scholar 

  9. Eneroth A, Astrom E, Hoogstraate J, Schrenk D, Conrad S, Kauffmann HM, Gjellan K (2001) Evaluation of a vincristine resistant Caco-2 cell line for use in a calcein AM extrusion screening assay for P-glycoprotein interaction. Eur J Pharm Sci 12:205–214

    Article  CAS  PubMed  Google Scholar 

  10. Wandel C, Kim R, Wood M, Wood A (2002) Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 96:913–920

    CAS  PubMed  Google Scholar 

  11. Miyazaki H, Nambu K, Matsunaga Y, Hashimoto M (1979) Disposition and metabolism of [14C]loperamide in rats. Eur J Drug Metab Pharmacokinet. 4:199–206

    CAS  PubMed  Google Scholar 

  12. Yoshida K, Nambu K, Arakawa S, Miyazaki H, Hashimoto M (1979) Metabolites of loperamide in rats. Biomed Mass Spectrom 6:253–259

    CAS  PubMed  Google Scholar 

  13. He H, Sadeque A, Erve JC, Wood AJ, Hachey DL (2000) Quantitation of loperamide and N-demethyl-loperamide in human plasma using electrospray ionization with selected reaction ion monitoring liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 744:323–331

    Article  CAS  PubMed  Google Scholar 

  14. Tayrouz Y, Ganssmann B, Ding R, Klingmann A, Aderjan R, Burhenne J, Haefeli WE, Mikus G (2001) Ritonavir increases loperamide plasma concentrations without evidence for P-glycoprotein involvement. Clin Pharmacol Ther 70:405–414

    Article  CAS  PubMed  Google Scholar 

  15. Park JY, Kim KA, Kim SL (2003) Chloramphenicol is a potent inhibitor of cytochrome P450 isoforms CYP2C19 and CYP3A4 in human liver microsomes. Antimicrob Agents Chemother 47:3464–3469

    Article  CAS  PubMed  Google Scholar 

  16. Kim KA, Park JY (2003) Inhibitory effect of glyburide on human cytochrome p450 isoforms in human liver microsomes. Drug Metab Dispos 31:1090–1092

    Article  CAS  PubMed  Google Scholar 

  17. Park JY, Kim KA (2003) Inhibitory effect of 5-fluorouracil on human cytochrome P(450) isoforms in human liver microsomes. Eur J Clin Pharmacol 59:407–409

    Article  CAS  PubMed  Google Scholar 

  18. Eagling VA, Tjia JF, Back DJ (1998) Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes. Br J Clin Pharmacol 45:107–114

    Article  CAS  PubMed  Google Scholar 

  19. Pearce R, Greenway D, Parkinson A (1992) Species differences and interindividual variation in liver microsomal cytochrome P4502A enzymes: effect on coumarin, dicumarol and testosterone oxidation. Arch Biochem Biophys 298:211–225

    CAS  PubMed  Google Scholar 

  20. Kobayashi K, Abe S, Nakajima M, Shimada N, Tani M, Chiba K, Yamamoto T (1999) Role of human CYP2B6 in S-mephobarbital N-demethylation. Drug Metab Dispos 27:1429–1433

    CAS  PubMed  Google Scholar 

  21. Rahman A, Korzekwa KR, Grogan J, Gonzales FJ, Harris JW (1994) Selective biotransformation of Taxol to 6-alpha hydroxy Taxol by human cytochrome P450 2C8. Cancer Res 54:5543–5546

    CAS  PubMed  Google Scholar 

  22. Newton DJ, Wang RW, Lu AY (1995) Cytochrome P450 inhibitors. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 23:154–158

    CAS  PubMed  Google Scholar 

  23. Ko JW, Sukhova N, Thacker D, Chen P, Flockhart DA (1997) Evaluation of omeprazole and lansoprazole as inhibitors of cytochrome P450 isoforms. Drug Metab Dispos 25:853–862

    CAS  PubMed  Google Scholar 

  24. Nakajima M, Nakamura S, Tokudome S, Shimada N, Yamazaki H, Yokoi T (1999) Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs. Drug Metab Dispos 27:1381–1391

    CAS  PubMed  Google Scholar 

  25. Stormer E, von Moltke LL, Greenblatt DJ (2000) Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: a comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism. J Pharmacol Exp Ther 295:793–801

    CAS  PubMed  Google Scholar 

  26. Venkatakrishnan K, von Moltke LL, Court MH, Harmatz JS, Crespi CL, Greenblatt DJ (2000) Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 28:1493–1504

    CAS  PubMed  Google Scholar 

  27. Rochat B (2003) Evaluation of recombinant cytochromes P450 activity in metabolic pathways. Drug Metab Dispos 31:145–146

    Article  CAS  PubMed  Google Scholar 

  28. Crespi CL (1995) Xenobiotic-metabolizing human cells as tools for pharmacological and toxicological research. Adv Drug Res 26:179–235

    CAS  Google Scholar 

  29. Venkatakrishnan K, von Moltke LL, Greenblatt DJ (1998) Human cytochromes P450 mediating phenacetin O-deethylation in vitro: validation of the high-affinity component as an index of CYP1A2 activity. J Pharm Sci 87:1502–1507

    Article  CAS  PubMed  Google Scholar 

  30. Hijazi Y, Boulieu R (2002) Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos 30:853–858

    Article  CAS  PubMed  Google Scholar 

  31. Oda Y, Hamaoka N, Hiroi T, Imaoka S, Hase I, Tanaka K, Funae Y, Ishizaki T, Asada A (2001) Involvement of human liver cytochrome P4502B6 in the metabolism of propofol. Br J Clin Pharmacol 51:281–285

    Article  CAS  PubMed  Google Scholar 

  32. Sai Y, Dai R, Yang TJ, Krausz KW, Gonzalez FJ, Gelboin HV, Shou M (2000) Assessment of specificity of eight chemical inhibitors using cDNA-expressed cytochromes P450. Xenobiotica 30:327–343

    Article  CAS  PubMed  Google Scholar 

  33. Kumar GN, Dykstra J, Roberts EM, Jayanti VK, Hickman D, Uchic J, Yao Y, Surber B, Thomas S, Granneman GR (1999) Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: a positive drug-drug interaction. Drug Metab Dispos 27:902–908

    CAS  PubMed  Google Scholar 

  34. Park-Wyllie LY, Antoniou T (2003) Concurrent use of bupropion with CYP2B6 inhibitors, nelfinavir, ritonavir and efavirenz: a case series. AIDS 17:638–640

    Article  PubMed  Google Scholar 

  35. Kim KA, Park JY, Lee JS, Lim S (2003) Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 26:631–637

    CAS  PubMed  Google Scholar 

  36. Stormer E, Brockmoller J, Roots I, Schmider J (2000) Cytochrome P-450 enzymes and FMO3 contribute to the disposition of the antipsychotic drug perazine in vitro. Psychopharmacology 151:312–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Meuldermans (Jassen Research Foundation, Beerse, Belgium) for the generous supply of the metabolite of loperamide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Young Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, KA., Chung, J., Jung, DH. et al. Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol 60, 575–581 (2004). https://doi.org/10.1007/s00228-004-0815-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-004-0815-3

Keywords

Navigation