Skip to main content

Advertisement

Log in

Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Loperamide is biotransformed in vitro by the cytochromes P450 (CYP) 2C8 and 3A4 and is a substrate of the P-glycoprotein efflux transporter. Our aim was to investigate the effects of itraconazole, an inhibitor of CYP3A4 and P-glycoprotein, and gemfibrozil, an inhibitor of CYP2C8, on the pharmacokinetics of loperamide.

Methods

In a randomized crossover study with 4 phases, 12 healthy volunteers took 100 mg itraconazole (first dose 200 mg), 600 mg gemfibrozil, both itraconazole and gemfibrozil, or placebo, twice daily for 5 days. On day 3, they ingested a single 4-mg dose of loperamide. Loperamide and N-desmethylloperamide concentrations in plasma were measured for up to 72 h and in urine for up to 48 h. Possible central nervous system effects of loperamide were assessed by the Digit Symbol Substitution Test and by subjective drowsiness.

Results

Itraconazole raised the peak plasma loperamide concentration (Cmax) 2.9-fold (range, 1.2–5.0; P<0.001) and the total area under the plasma loperamide concentration-time curve (AUC0-∞) 3.8-fold (1.4–6.6; P<0.001) and prolonged the elimination half-life (t½) of loperamide from 11.9 to 18.7 h (P<0.001). Gemfibrozil raised the Cmax of loperamide 1.6-fold (0.9–3.2; P<0.05) and its AUC0-∞ 2.2-fold (1.0–3.7; P<0.05) and prolonged its t½ to 16.7 h (P<0.01). The combination of itraconazole and gemfibrozil raised the Cmax of loperamide 4.2-fold (1.5–8.7; P<0.001) and its AUC0-∞ 12.6-fold (4.3–21.8; P<0.001) and prolonged the t½ of loperamide to 36.9 h (P<0.001). The amount of loperamide excreted into urine within 48 h was increased 3.0-fold, 1.4-fold and 5.3-fold by itraconazole, gemfibrozil and their combination, respectively (P<0.05). Itraconazole, gemfibrozil and their combination reduced the plasma AUC0–72 ratio of N-desmethylloperamide to loperamide by 65%, 46% and 88%, respectively (P<0.001). No significant differences were seen in the Digit Symbol Substitution Test or subjective drowsiness between the phases.

Conclusion

Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide. Although not seen in the psychomotor tests used, an increased risk of adverse effects should be considered during concomitant use of loperamide with itraconazole, gemfibrozil and especially their combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Killinger JM, Weintraub HS, Fuller BL (1979) Human pharmacokinetics and comparative bioavailability of loperamide hydrochloride. J Clin Pharmacol 19:211–218

    PubMed  CAS  Google Scholar 

  2. Dagenais C, Graff CL, Pollack GM (2004) Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol 67:269–276

    Article  PubMed  CAS  Google Scholar 

  3. Doser K, Meyer B, Nitsche V, Binkert-Graber P (1995) Bioequivalence evaluation of two different oral formulations of loperamide (Diarex Lactab vs Imodium capsules). Int J Clin Pharmacol Ther 33:431–436

    PubMed  CAS  Google Scholar 

  4. Kim KA, Chung J, Jung DH, Park JY (2004) Identification of cytochrome P450 isoforms involved in the metabolism of loperamide in human liver microsomes. Eur J Clin Pharmacol 60:575–581

    Article  PubMed  CAS  Google Scholar 

  5. Fromm MF (2004) Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 25:423–429

    Article  PubMed  CAS  Google Scholar 

  6. Fromm MF, Kim RB, Stein CM, Wilkinson GR, Roden DM (1999) Inhibition of P-glycoprotein-mediated drug transport: A unifying mechanism to explain the interaction between digoxin and quinidine. Circulation 99:552–557

    PubMed  CAS  Google Scholar 

  7. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68:231–237

    Article  PubMed  CAS  Google Scholar 

  8. Skarke C, Jarrar M, Schmidt H, Kauert G, Langer M, Geisslinger G, Lötsch J (2003) Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics 13:651–660

    Article  PubMed  CAS  Google Scholar 

  9. Gutmann H, Fricker G, Drewe J, Toeroek M, Miller DS (1999) Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 56:383–389

    PubMed  CAS  Google Scholar 

  10. von Moltke LL, Greenblatt DJ, Grassi JM, Granda BW, Duan SX, Fogelman SM, Daily JP, Harmatz JS, Shader RI (1998) Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 38:106–111

    Google Scholar 

  11. Tayrouz Y, Ganssmann B, Ding R, Klingmann A, Aderjan R, Burhenne J, Haefeli WE, Mikus G (2001) Ritonavir increases loperamide plasma concentrations without evidence for P-glycoprotein involvement. Clin Pharmacol Ther 70:405–414

    PubMed  CAS  Google Scholar 

  12. Kamali F, Huang ML (1996) Increased systemic availability of loperamide after oral administration of loperamide and loperamide oxide with cotrimoxazole. Br J Clin Pharmacol 41:125–128

    Article  PubMed  CAS  Google Scholar 

  13. Totah RA, Rettie AE (2005) Cytochrome P450 2C8: substrates, inhibitors, pharmacogenetics and clinical relevance. Clin Pharmacol Ther 77:341–352

    Article  PubMed  CAS  Google Scholar 

  14. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ (2003) Effects of gemfibrozil, itraconazole and their combination on the pharmacokinetics and pharmacodynamics of repaglinide: potentially hazardous interaction between gemfibrozil and repaglinide. Diabetologia 46:347–351

    Article  PubMed  CAS  Google Scholar 

  15. Backman JT, Kyrklund C, Neuvonen M, Neuvonen PJ (2002) Gemfibrozil greatly increases plasma concentrations of cerivastatin. Clin Pharmacol Ther 72:685–691

    Article  PubMed  CAS  Google Scholar 

  16. Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ (2005) Effects of gemfibrozil, itraconazole and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther 77:404–414

    Article  PubMed  CAS  Google Scholar 

  17. Niemi M, Backman JT, Granfors M, Laitila J, Neuvonen M, Neuvonen PJ (2003) Gemfibrozil considerably increases the plasma concentrations of rosiglitazone. Diabetologia 46:1319–1323

    Article  PubMed  CAS  Google Scholar 

  18. Wang JS, Neuvonen M, Wen X, Backman JT, Neuvonen PJ (2002) Gemfibrozil inhibits CYP2C8-mediated cerivastatin metabolism in human liver microsomes. Drug Metab Dispos 30:1352–1356

    Article  PubMed  Google Scholar 

  19. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT (2005) Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97:249–256

    Article  PubMed  CAS  Google Scholar 

  20. Shitara Y, Hirano M, Sato H, Sugiyama Y (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236

    Article  PubMed  CAS  Google Scholar 

  21. Prueksaritanont T, Zhao JJ, Ma B, Roadcap BA, Tang C, Qiu Y, Liu L, Lin JH, Pearson PG, Baillie TA (2002) Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 301:1042–1051

    Article  PubMed  CAS  Google Scholar 

  22. Backman JT, Kyrklund C, Kivistö KT, Wang JS, Neuvonen PJ (2000) Plasma concentrations of active simvastatin acid are increased by gemfibrozil. Clin Pharmacol Ther 68:122–129

    Article  PubMed  CAS  Google Scholar 

  23. Kivistö KT, Zukunft J, Hofmann U, Niemi M, Rekersbrink S, Schneider S, Luippold G, Schwab M, Eichelbaum M, Fromm MF (2004) Characterisation of cerivastatin as a P-glycoprotein substrate: studies in P-glycoprotein-expressing cell monolayers and mdr1a/b knock-out mice. Naunyn Schmiedebergs Arch Pharmacol 370:124–130

    Article  PubMed  CAS  Google Scholar 

  24. Jurima-Romet M, Crawford K, Cyr T, Inaba T (1994) Terfenadine metabolism in human liver. In vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 22:849–857

    PubMed  CAS  Google Scholar 

  25. Olkkola KT, Backman JT, Neuvonen PJ (1994) Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 55:481–485

    Article  PubMed  CAS  Google Scholar 

  26. Wang EJ, Lew K, Casciano CN, Clement RP, Johnson WW (2002) Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother 46:160–165

    Article  PubMed  CAS  Google Scholar 

  27. Jalava KM, Partanen J, Neuvonen PJ (1997) Itraconazole decreases renal clearance of digoxin. Ther Drug Monit 19:609–613

    Article  PubMed  CAS  Google Scholar 

  28. Ong CE, Coulter S, Birkett DJ, Bhasker CR, Miners JO (2000) The xenobiotic inhibitor profile of cytochrome P4502C8. Br J Clin Pharmacol 50:573–580

    Article  PubMed  CAS  Google Scholar 

  29. Ganssmann B, Klingmann A, Burhenne J, Tayrouz Y, Aderjan R, Mikus G (2001) Simultaneous determination of loperamide and its demethylated metabolites in plasma and urine by high-performance liquid chromatography-atmospheric-pressure ionization mass spectrometry. Chromatographia 53:656–660

    Article  CAS  Google Scholar 

  30. Hengy H, Kölle EU (1988) Determination of gemfibrozil in plasma by high performance liquid chromatography. Arzneimittelforschung 35:1637–1639

    Google Scholar 

  31. Remmel RP, Dombrovskis D, Canafax DM (1988) Assay of itraconazole in leukemic patient plasma by reversed-phase small-bore liquid chromatography. J Chromatogr 432:388–394

    Article  PubMed  CAS  Google Scholar 

  32. Allenmark S, Edebo A, Lindgren K (1990) Determination of itraconazole in serum with high-performance liquid chromatography and fluorescence detection. J Chromatogr 532:203–206

    Article  PubMed  CAS  Google Scholar 

  33. Kyrklund C, Backman JT, Neuvonen M, Neuvonen PJ (2003) Gemfibrozil increases plasma pravastatin concentrations and reduces pravastatin renal clearance. Clin Pharmacol Ther 73:538–544

    Article  PubMed  CAS  Google Scholar 

  34. Litovitz T, Clancy C, Korberly B, Temple AR, Mann KV (1997) Surveillance of loperamide ingestions: an analysis of 216 Poison Center reports. J Toxicol Clin Toxicol 35:11–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Mikko Neuvonen, MSc, Mr. Jouko Laitila, Mrs. Kerttu Mårtensson, Mrs. Eija Mäkinen-Pulli and Mrs. Lisbet Partanen for skillful assistance in performing this study and drug analyses. This study was supported by grants from the Helsinki University Central Hospital Research Fund and Sigrid Juselius Foundation. Experiments comply with the current laws, inclusive of ethics approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikko Niemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemi, M., Tornio, A., Pasanen, M.K. et al. Itraconazole, gemfibrozil and their combination markedly raise the plasma concentrations of loperamide. Eur J Clin Pharmacol 62, 463–472 (2006). https://doi.org/10.1007/s00228-006-0133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-006-0133-z

Keywords

Navigation