Skip to main content
Log in

Impact of the CYP3A5 genotype on midazolam pharmacokinetics and pharmacodynamics during intensive care sedation

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Information is lacking on whether the CYP3A5 genotype affects the disposition and effects of midazolam during the long-term intensive care sedation of patients. This study was undertaken to estimate whether the CYP3A5 genotype can explain a relevant portion of pharmacokinetic interindividual variability.

Methods

We determined the CYP3A5 genotype in 71 Caucasian patients who underwent long-term sedation during intensive care treatment. We then assessed the relation between the genotype and both the plasma concentrations of midazolam and 1′-OH-midazolam in 645 plasma samples and the simultaneously estimated Ramsay sedation score, both of which were recorded during routine midazolam drug monitoring.

Results

Eight patients had the CYP3A5*1/*3 genotype and 63 patients the CYP3A5*3/*3 genotype. The concentration–dose ratio [C/D; plasma concentration of midazolam (ng/ml) divided by the rate of infusion (mg/h); expressed as the mean (95% confidence interval)] was 87.4 (70.8, 108.9) for the *3/*3 patients and 79.0 (48.9, 129.0) for *1/*3 patients. The corresponding data for infusion rate (IR; in mg/h), Ramsay score (RS) and the ratio 1′-OH-midazolam concentration/midazolam concentration (ROH) for *3/*3 and *1/*3 patients were IR 7.4 (6.2, 8.6) vs. 11.4 (4.9, 17.9), RS 5.4 (5.2, 5.6) vs. 5.3 (4.2, 6.0) and ROH 0.11 (0.09, 0.13) vs. 0.17 (0.11, 0.26), respectively.

Conclusions

The CYP3A5*1/*3 genotype did not lead to an apparently lower midazolam concentration/dose ratio or Ramsay score values. As the present sedation procedure during intensive care therapy may be described as a physician closed-loop titration towards Ramsay scores of 4 ± 1, our data do not indicate that prior determination of the genotype will result in better care or economic savings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. He P, Court MH, Greenblatt DJ, von Moltke LL (2005) Genotype-phenotype associations of cytochrome P450 3A4 and 3A5 polymorphism with midazolam clearance in vivo. Clin Pharmacol Ther 77(5):373–387

    Article  PubMed  CAS  Google Scholar 

  2. Bremer F, Reulbach U, Schwilden H, Schuttler J (2004) Midazolam therapeutic drug monitoring in intensive care sedation: a 5-year survey. Ther Drug Monit 26(6):643–649

    Article  PubMed  CAS  Google Scholar 

  3. Xie, HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR (2004) Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 5(3):243–272

    Article  PubMed  CAS  Google Scholar 

  4. Hustert, E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, Nüssler AC, Neuhaus P, Klattig J, Eiselt R, Koch I, Zibat A, Brockmöller J, Halpert JR, Zanger UM, Wojnowski L (2001) The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11(9):773–779

    Article  PubMed  CAS  Google Scholar 

  5. Kuehl, P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E (2001) Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 27(4):383–391

    Article  PubMed  CAS  Google Scholar 

  6. Dai, Y, Iwanaga K, Lin YS, Hebert MF, Davis CL, Huang W, Kharasch ED, Thummel KE (2004) In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol 68(9):1889–1902

    Article  PubMed  CAS  Google Scholar 

  7. Kivistö, KT, Niemi M, Schaeffeler E, Pitkala K, Tilvis RT, Fromm MF, Schwab M, Eichelbaum M, Strandberg T (2004) Lipid-lowering response to statins is affected by CYP3A5 polymorphism. Pharmacogenetics 14(8):523–525

    Article  PubMed  Google Scholar 

  8. Mouly, SJ, Matheny C, Paine MF, Smith G, Lamba J, Lamba V, Pusek SN, Schuetz EG, Stewart PW, Watkins PB (2005) Variation in oral clearance of saquinavir is predicted by CYP3A5*1 genotype but not by enterocyte content of cytochrome P450 3A5. Clin Pharmacol Ther 78(6):605–618

    Article  PubMed  CAS  Google Scholar 

  9. Park, JY, Kim KA, Park PW, Lee OJ, Kang DK, Shon JH, Liu KH, Shin JG (2006) Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther 79(6):590–599

    Article  PubMed  CAS  Google Scholar 

  10. Eap, CB, Buclin T, Hustert E, Bleiber G, Golay KP, Aubert AC, Baumann P, Telenti A, Kerb R (2004) Pharmacokinetics of midazolam in CYP3A4- and CYP3A5-genotyped subjects. Eur J Clin Pharmacol 60(4):231–236

    PubMed  CAS  Google Scholar 

  11. Floyd, MD, Gervasini G, Masica AL, Mayo G, George AL Jr, Bhat K, Kim RB, Wilkinson GR (2003) Genotype-phenotype associations for common CYP3A4 and CYP3A5 variants in the basal and induced metabolism of midazolam in European- and African-American men and women. Pharmacogenetics 13(10):595–606

    Article  PubMed  CAS  Google Scholar 

  12. He, P, Court MH, Greenblatt DJ, von Moltke LL (2006) Factors influencing midazolam hydroxylation activity in human liver microsomes. Drug Metab Dispos 34(7):1198–1207

    Article  PubMed  CAS  Google Scholar 

  13. Huang, W, Lin YS, McConn DJ, Calamia JC, Totah RA, Isoherranen N, Glodowski M, Thummel KE (2004) Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 32(12):1434–1445

    Article  PubMed  CAS  Google Scholar 

  14. Lepper, ER, Baker SD, Permenter M, Ries N, van Schaik RH, Schenk PW, Price DK, Ahn D, Smith NF, Cusatis G, Ingersoll RG, Bates SE, Mathijssen RH, Verweij J, Figg WD, Sparreboom A (2005) Effect of common CYP3A4 and CYP3A5 variants on the pharmacokinetics of the cytochrome P450 3A phenotyping probe midazolam in cancer patients. Clin Cancer Res 11(20):7398–7404

    Article  PubMed  CAS  Google Scholar 

  15. Shih, PS, Huang JD (2002) Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab Dispos 30(12):1491–1496

    Article  PubMed  CAS  Google Scholar 

  16. Williams JA, Cook J, Hurst SI (2003) A significant drug-metabolizing role for CYP3A5? Drug Metab Dispos 31(12):1526–1530

    Article  PubMed  CAS  Google Scholar 

  17. Wong M, Balleine RL, Collins M, Liddle C, Clarke CL, Gurney H (2004) CYP3A5 genotype and midazolam clearance in Australian patients receiving chemotherapy. Clin Pharmacol Ther 75(6):529–538

    Article  PubMed  CAS  Google Scholar 

  18. Yamaori S, Yamazaki H, Iwano S, Kiyotani K, Matsumura K, Honda G, Nakagawa K, Ishizaki T, Kamataki T (2004) CYP3A5 Contributes significantly to CYP3A-mediated drug oxidations in liver microsomes from Japanese subjects. Drug Metab Pharmacokinet 19(2):120–129

    Article  PubMed  CAS  Google Scholar 

  19. Yu, KS, Cho JY, Jang IJ, Hong KS, Chung JY, Kim JR, Lim HS, Oh DS, Yi SY, Liu KH, Shin JG, Shin SG (2004) Effect of the CYP3A5 genotype on the pharmacokinetics of intravenous midazolam during inhibited and induced metabolic states. Clin Pharmacol Ther 76(2):104–112

    Article  PubMed  CAS  Google Scholar 

  20. Fromm, MF, Schmidt BM, Pahl A, Jacobi J, Schmieder RE (2005) CYP3A5 genotype is associated with elevated blood pressure. Pharmacogenet Genomics 15(10):737–741

    Article  PubMed  CAS  Google Scholar 

  21. Albrecht, S, Ihmsen H, Hering W, Geisslinger G, Dingemanse J, Schwilden H, Schuttler J (1999) The effect of age on the pharmacokinetics and pharmacodynamics of midazolam. Clin Pharmacol Ther 65(6):630–639

    Article  PubMed  CAS  Google Scholar 

  22. Jacobi, J, Fraser GL, Coursin DB, Riker RR, Fontaine D, Wittbrodt ET, Chalfin DB, Masica MF, Bjerke HS, Coplin WM, Crippen DW, Fuchs BD, Kelleher RM, Marik PE, Nasraway SA Jr, Murray MJ, Peruzzi WT, Lumb PD (2002) Clinical practice guidelines for the sustained use of sedatives and analgesics in the critically ill adult. Crit Care Med 30(1):119–141

    Article  PubMed  Google Scholar 

  23. Odin I, Djebli N, Marquet P, Nathan N (2006) Midazolam metabolism and CYP 3A4 and 3A5: pharmacokinetics and pharmacogenetic interaction. Anesthesiology 105:A627, abstract

    Article  Google Scholar 

  24. Park JY, Kim KA, Park PW, Lee OJ, Kang DK, Shon JH, Liu KH, Shin JG (2006) Effect of CYP3A5*3 genotype on the pharmacokinetics and pharmacodynamics of alprazolam in healthy subjects. Clin Pharmacol Ther 79(6):590–599

    Article  PubMed  CAS  Google Scholar 

  25. Foti RS, Fisher MB (2004) Importance of patient selection when determining the significance of the CYP3A5 polymorphism in clinical trials. Pharmacogenomics J 4(6):362–364

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study complies with the current laws of the Federal Republic of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Fromm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromm, M.F., Schwilden, H., Bachmakov, I. et al. Impact of the CYP3A5 genotype on midazolam pharmacokinetics and pharmacodynamics during intensive care sedation. Eur J Clin Pharmacol 63, 1129–1133 (2007). https://doi.org/10.1007/s00228-007-0365-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0365-6

Keywords

Navigation