Skip to main content
Log in

Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

Fentanyl is a widely used opioid analgesic, which is extensively metabolized by hepatic cytochrome P450 (CYP) 3A. Recent reports suggest that concomitant administration of CYP3A inhibitors with fentanyl may lead to dangerous drug interactions.

Methods

The potential interactions of fentanyl with triazole antifungal agents voriconazole and fluconazole were studied in a randomized crossover study in three phases. Twelve healthy volunteers were given 5 μg/kg of intravenous fentanyl without pretreatment (control), after oral voriconazole (400 mg twice on the first day and 200 mg twice on the second day), or after oral fluconazole (400 mg once on the first day and 200 mg once on the second day). Plasma concentrations of fentanyl, norfentanyl, voriconazole, and fluconazole were determined up to 24 h. Pharmacokinetic parameters were calculated using compartmental methods.

Results

The mean plasma clearance of intravenous fentanyl was decreased by 23% (range −22 to 48%; p < 0.05) and 16% (−34 to 53%; p < 0.05) after voriconazole and fluconazole administration, respectively. Voriconazole increased the area under the fentanyl plasma concentration-time curve by 1.4-fold (p < 0.05). The initial plasma concentrations and volume of distribution of fentanyl did not differ significantly between phases.

Conclusion

Both voriconazole and fluconazole delay the elimination of fentanyl significantly. Caution should be exercised, especially in patients who are given voriconazole or fluconazole during long-lasting fentanyl treatment, because insidiously elevated fentanyl concentration may lead to respiratory depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Muijsers RB, Wagstaff AJ (2001) Transdermal fentanyl: an updated review of its pharmacological properties and therapeutic efficacy in chronic cancer pain control. Drugs 61(15):2289–2307

    Article  PubMed  CAS  Google Scholar 

  2. Mystakidou K, Katsouda E, Parpa E, Vlahos L, Tsiatas ML (2006) Oral transmucosal fentanyl citrate: overview of pharmacological and clinical characteristics. Drug Deliv 13(4):269–276

    Article  PubMed  CAS  Google Scholar 

  3. Portenoy RK, Messina J, Xie F, Peppin J (2007) Fentanyl buccal tablet (FBT) for relief of breakthrough pain in opioid-treated patients with chronic low back pain: a randomized, placebo-controlled study. Curr Med Res Opin 23(1):223–233

    Article  PubMed  CAS  Google Scholar 

  4. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 82(1):167–172

    Article  PubMed  CAS  Google Scholar 

  5. Guitton J, Buronfosse T, Desage M, Lepape A, Brazier JL, Beaune P (1997) Possible involvement of multiple cytochrome P450S in fentanyl and sufentanil metabolism as opposed to alfentanil. Biochem Pharmacol 53(11):1613–1619

    Article  PubMed  CAS  Google Scholar 

  6. Labroo RB, Paine MF, Thummel KE, Kharasch ED (1997) Fentanyl metabolism by human hepatic and intestinal cytochrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos 25(9):1072–1080

    PubMed  CAS  Google Scholar 

  7. Ibrahim AE, Feldman J, Karim A, Kharasch ED (2003) Simultaneous assessment of drug interactions with low- and high-extraction opioids: application to parecoxib effects on the pharmacokinetics and pharmacodynamics of fentanyl and alfentanil. Anesthesiology 98(4):853–861

    Article  PubMed  CAS  Google Scholar 

  8. Bower S, Hull CJ (1982) Comparative pharmacokinetics of fentanyl and alfentanil. Br J Anaesth 54(8):871–877

    Article  PubMed  CAS  Google Scholar 

  9. Rowland M, Tozer TN (1995) Elimination. In: Rowland M, Tozer TN (eds) Clinical pharmacokinetics: concepts and applications. 3rd edn. Williams and Wilkins, Baltimore, pp 156–183

    Google Scholar 

  10. Olkkola KT, Palkama V, Neuvonen PJ (1999) Ritonavir’s role in reducing fentanyl clearance and prolonging its half-life. Anesthesiology 91(3):681–685

    Article  PubMed  CAS  Google Scholar 

  11. Theuretzbacher U, Ihle F, Derendorf H (2006) Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45(7):649–663

    Article  PubMed  CAS  Google Scholar 

  12. Hyland R, Jones BC, Smith DA (2003) Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metabol Dispos 31(5):540–547

    Article  CAS  Google Scholar 

  13. Hynninen VV, Olkkola KT, Leino K, Lundgren S, Neuvonen PJ, Rane A, Valtonen M, Vyyrylainen H, Laine K (2006) Effects of the antifungals voriconazole and fluconazole on the pharmacokinetics of s–(+)- and R-(−)-Ibuprofen. Antimicrob Agents Chemother 50(6):1967–1972

    Article  PubMed  CAS  Google Scholar 

  14. Romero AJ, Le Pogamp P, Nilsson L-G, Wood N (2002) Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 71(4):226–234

    Article  PubMed  CAS  Google Scholar 

  15. Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ, Olkkola KT (2006) Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 79(4):362–370

    Article  PubMed  CAS  Google Scholar 

  16. Saari TI, Laine K, Leino K, Valtonen M, Neuvonen PJ, Olkkola KT (2006) Voriconazole, but not terbinafine, markedly reduces alfentanil clearance and prolongs its half-life. Clin Pharmacol Ther 80(5):502–508

    Article  PubMed  CAS  Google Scholar 

  17. Morita K, Konishi H, Shimakawa H (1992) Fluconazole: a potent inhibitor of cytochrome P-450-dependent drug-metabolism in mice and humans in vivo. Comparative study with ketoconazole. Chem Pharm Bull (Tokyo) 40(5):1247–1251

    CAS  Google Scholar 

  18. Wienkers LC, Wurden CJ, Storch E, Kunze KL, Rettie AE, Trager WF (1996) Formation of (R)-8-hydroxywarfarin in human liver microsomes. A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 24(5):610–614

    PubMed  CAS  Google Scholar 

  19. Niwa T, Shiraga T, Takagi A (2005) Effect of antifungal drugs on cytochrome P450 (CYP) 2C9, CYP2C19, and CYP3A4 activities in human liver microsomes. Biol Pharm Bull 28(9):1805–1808

    Article  PubMed  CAS  Google Scholar 

  20. Olkkola KT, Ahonen J, Neuvonen PJ (1996) The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 82(3):511–516

    Article  PubMed  CAS  Google Scholar 

  21. Varhe A, Olkkola KT, Neuvonen PJ (1996) Fluconazole, but not terbinafine, enhances the effects of triazolam by inhibiting its metabolism. Br J Clin Pharmacol 41(4):319–323

    Article  PubMed  CAS  Google Scholar 

  22. Palkama VJ, Isohanni MH, Neuvonen PJ, Olkkola KT (1998) The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 87(1):190–194

    Article  PubMed  CAS  Google Scholar 

  23. Hallberg P, Marten L, Wadelius M (2006) Possible fluconazole-fentanyl interaction-a case report. Eur J Clin Pharmacol 62(2):491–492

    Article  PubMed  Google Scholar 

  24. Gage R, Stopher DA (1998) A rapid HPLC assay for voriconazole in human plasma. J Pharm Biomed Anal 17(8):1449–1453

    Article  PubMed  CAS  Google Scholar 

  25. Pennick GJ, Clark M, Sutton DA, Rinaldi MG (2003) Development and validation of HPLC assay for voriconazole. Antimicrob Agents Chemother 47(7):2348–2350

    Article  PubMed  CAS  Google Scholar 

  26. Inagaki K, Takagi J, Lor E, Okamoto MP, Gill MA (1992) Determination of fluconazole in human serum by solid-phase extraction and reversed-phase high-performance liquid chromatography. Ther Drug Monit 14(4):306–311

    Article  PubMed  CAS  Google Scholar 

  27. Akaike H (1976) An information criterion (AIC). Math Sci 14:5–9

    Google Scholar 

  28. Wagner JG (1976) Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data. J Pharmacokin Biopharm 4(5):443–467

    Article  CAS  Google Scholar 

  29. McClain DA, Hug CC (1980) Intravenous fentanyl kinetics. Clin Pharmacol Ther 28(1):106–114

    Article  PubMed  CAS  Google Scholar 

  30. Kharasch ED, Whittington D, Hoffer C (2004) Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate. Anesthesiology 101(3):729–737

    Article  PubMed  CAS  Google Scholar 

  31. Handal KA, Schauben JL, Salamone FR (1983) Naloxone. Ann Emerg Med 12(7):438–445

    Article  PubMed  CAS  Google Scholar 

  32. Jung BF, Reidenberg MM (2005) Interpretation of opioid levels: comparison of levels during chronic pain therapy to levels from forensic autopsies. Clin Pharmacol Ther 77(4):324–334

    Article  PubMed  CAS  Google Scholar 

  33. Grond S, Radbruch L, Lehmann KA (2000) Clinical pharmacokinetics of transdermal opioids: focus on transdermal fentanyl. Clin Pharmacokinet 38(1):59–89

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Elina Kahra, Mrs. Eija Mäkinen-Pulli, and Kerttu Mårtensson for technical assistance and skilful determination of the voriconazole and fluconazole plasma concentrations. The study was supported by EVO grants no. 13821 and no. 13390 of the Hospital District of Southwest Finland, the Duocecim Foundation, Finland and the Sigrid Juselius Foundation, Finland. All experiments comply with the current laws in Finland, where the research was performed. There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teijo I. Saari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saari, T.I., Laine, K., Neuvonen, M. et al. Effect of voriconazole and fluconazole on the pharmacokinetics of intravenous fentanyl. Eur J Clin Pharmacol 64, 25–30 (2008). https://doi.org/10.1007/s00228-007-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0398-x

Keywords

Navigation