Skip to main content
Log in

Effects of allicin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

To investigate the interaction between allicin and omeprazole and to observe the effects of allicin on CYP2C19 and CYP3A4 activity in healthy Chinese male volunteers with different CYP2C19 genotypes.

Methods

Eighteen subjects (six CYP2C19*1/CYP2C19*1, four CYP2C19*1/CYP2C19*2, two CYP2C19*1/ CYP2C19*3, and six CYP2C19*2/ CYP2C19*2) were enrolled in a two-phase randomized crossover trial. In each phase, all subjects received placebo or a 180 mg allicin capsule once daily for 14 consecutive days. The pharmacokinetics of omeprazole (20 mg orally on day 15) was determined for up to 12 h following administration by high-performance liquid chromatography.

Results

In carriers of the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotype, allicin treatment increased the peak plasma concentration (Cmax) of omeprazole by 49.7 ± 7.2 (p < 0.001) and 54.2 ± 9.2% (p < 0.001), and increased the area under the plasma time–concentration curve (\({\text{AUC}}_{\left( {0 - \infty } \right)} \) ) of omeprazole by 48.1 ± 9.0 (p = 0.001) and 73.6 ± 26.7% (p < 0.001), respectively. The ratio of \({\text{AUC}}_{\left( {0 - \infty } \right)} \) of 5-hydroxyomeprazole to omeprazole (a marker for CYP2C19 activity) decreased significantly (p < 0.001 and p = 0.001, respectively). However, no pharmacokinetic parameters were significantly changed by allicin in CYP2C19*2/CYP2C19*2. The Cmax and \({\text{AUC}}_{\left( {0 - \infty } \right)} \) of omeprazole sulfone were unchanged in all three genotypes.

Conclusions

Allicin reduced the metabolism of omeprazole by inhibiting CYP2C19 activity in individuals with the CYP2C19*1/CYP2C19*1 and CYP2C19*1/CYP2C19*2 or *3 genotypes, but not in those with the CYP2C19*2/ CYP2C19*2 genotype. Allicin did not significantly affect the activity of CYP3A4 in all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Artz MB, Harnack LJ, Duval SJ, Armstrong C, Arnett DK, Luepker RV (2006) Use of nonprescription medications for perceived cardiovascular health. Am J Prev Med 30(1):78–81

    Article  PubMed  Google Scholar 

  2. Bent S, Ko R (2004) Commonly used herbal medicines in the United States: a review. Am J Med 116:478–485

    Article  PubMed  Google Scholar 

  3. Blumenthal M (2003) Herbs continue slide in mainstream market: sales down 14 percent. Herbal Gram 58:71

    Google Scholar 

  4. Harris JC, Cottrell SL, Plummer S, Lloyd D (2001) Antimicrobial properties of Allium sativum(garlic). Appl Microbiol Biotechnol 57(3):282–286

    Article  PubMed  CAS  Google Scholar 

  5. Sparreboom A, Cox MC, Acharya MR, Figg WD (2004) Herbal remedies in the United States: potential adverse interactions with anticancer agents. J Clin Oncol 22(12):2489–2503

    Article  PubMed  CAS  Google Scholar 

  6. Gorinstein S, Leontowicz H, Leontowicz M, Drzewiecki J, Najman K, Katrich E (2006) Raw and boiled garlic enhances plasma antioxidant activity and improves plasma lipid metabolism in cholesterol-fed rats. Life Sci 78:655–663

    Article  PubMed  CAS  Google Scholar 

  7. Durak I, Aytaç B, Atmaca Y, Devrim E, Avci A, Erol C (2004) Effects of garlic extract consumption on plasma and erythrocyte antioxidant parameters in atherosclerotic patients. Life Sci 75:1959–1966

    Article  PubMed  CAS  Google Scholar 

  8. Durak I, Kavutcu M, Aytaç B, Avci A, Devrim E, Ozbek H (2004) Effects of garlic extract consumption on blood lipid and oxidant/antioxidant parameters in humans with high blood cholesterol. J Nutr Biochem 15(6):373–377

    Article  PubMed  CAS  Google Scholar 

  9. Cañizares P, Gracia I, Gómez LA, Martín de Argila C, Boixeda D, García A (2004) Allyl-thiosulfinates, the bacteriostatic compounds of garlic against Helicobacter pylori. Biotechnol Prog 20(1):397–401

    Article  PubMed  Google Scholar 

  10. Sivam GP (2001) Protection against Helicobacter pylori and other bacterial infections by garlic. J Nutr 131:1106–1108

    Google Scholar 

  11. Zou L, Harkey MR, Henderson GL (2002) Effects of herbal components on cDNA-expressed cytochrome P450 enzyme catalytic activity. Life Sci 71(13):1579–1589

    Article  PubMed  CAS  Google Scholar 

  12. Foster BC, Foster MS, Vandenhoek S, Krantis A, Budzinski JW, Arnason JT (2001) An in vitro evaluation of human cytochrome P450 3A4 and P-glycoprotein inhibition by garlic. J Pharm Pharm Sci 4(2):176–184

    PubMed  CAS  Google Scholar 

  13. Markowitz JS, Devane CL, Chavin KD, Taylor RM, Ruan Y, Donovan JL (2003) Effects of garlic (Allium sativum L.) supplementation on cytochrome P450 2D6 and 3A4 activity in healthy volunteers. Clin Pharmacol Ther 74(2):170–177

    Article  PubMed  CAS  Google Scholar 

  14. Gurley BJ, Gardner SF, Hubbard MA, Williams DK, Gentry WB, Cui Y (2002) Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin Pharmacol Ther 72(3):276–287

    Article  PubMed  CAS  Google Scholar 

  15. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin in humans. J Bio Chem 269:15419–15422

    Google Scholar 

  16. de Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of S-mephenytoin in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  17. Brosen K, de Morais SM, Meyer UA, Goldstein JA (1995) A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics 5:312–317

    Article  PubMed  CAS  Google Scholar 

  18. Chiba K, Kobayashi K, Manabe K, Tani M, Kamataki T, Ishizaki T (1993) Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4’-hydroxylation. J Pharmacol Exp Ther 266:52–59

    PubMed  CAS  Google Scholar 

  19. Karam WG, Goldstein JA, Lasker JM, Ghanayem BI (1996) Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab Dispos 24:1081–1087

    PubMed  CAS  Google Scholar 

  20. Chang M, Tybring G, Dahl ML, Götharson E, Sagar M, Seensalu R (1995) Interphenotype differences in disposition and effect on gastrin levels of omeprazole -suitability of omeprazole as a probe for CYP2C19. Br J Clin Pharmacol 39:511–518

    PubMed  CAS  Google Scholar 

  21. Böttiger Y, Tybring G, Götharson E, Bertilsson L (1997) Inhibition of the sulfoxidation of omeprazole by ketoconazole in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 62:384–391

    Article  PubMed  Google Scholar 

  22. Tassaneeyakul W, Vannaprasaht S, Yamazoe Y (2000) Formation of omeprazole sulfone but not 5-hydroxyomeprazole is inhibited by grapefruit juice. Br J Clin Pharmacol 49:139–144

    Article  PubMed  CAS  Google Scholar 

  23. Shu Y, Wang LS, Xiao WM, Wang W, Huang SL, Zhou HH (2000) Probing CYP2C19 and CYP3A4 activities in Chinese liver microsomes by quantification of 5-hydroxyomeprazole and omeprazole sulfone. Acta Pharmacologica Sinica 21:753–758

    PubMed  CAS  Google Scholar 

  24. González HM, Romero EM, Chavez T de J, Peregrina AA, Quezada V, Hoyo-Vadillo C (2002) Phenotype of CYP2C19 and CYP3A4 by determination of omeprazole and its two main metabolites in plasma using liquid chromatography with liquid-liquid extraction. J Chromatogr B Analyt Technol Biomed Life Sci 25:459–465

    Google Scholar 

  25. Yin OQ, Tomlinson B, Chow AH, Waye MM, Chow MS (2004) Omeprazole as a CYP2C19 marker in Chinese subjects: assessment of its gene-dose effect and intrasubject variability. J Clin Pharmacol 44(6):582–589

    Article  PubMed  CAS  Google Scholar 

  26. Qiao HL, Hu YR, Tian X, Jia LJ, Gao N, Zhang LR (2006) Pharmacokinetics of three proton pump inhibitors in Chinese subjects in relation to the CYP2C19 genotype. Eur J Clin Pharmacol 62(2):107–112

    Article  PubMed  CAS  Google Scholar 

  27. Furuta T, Shirai N, Sugimoto M, Nakamura A, Hishida A, Ishizaki T (2005) Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies. Drug Metab Pharmacokinet 20(3):153–167

    Article  PubMed  CAS  Google Scholar 

  28. Furuta T, Ohashi K, Kamata T, Takashima M, Kosuge K, Kawasaki T (1998) Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 129(12):1027–1030

    PubMed  CAS  Google Scholar 

  29. Tanigawara Y, Aoyama N, Kita T, Shirakawa K, Komada F, Kasuga M (1999) CYP2C19 genotype-related efficacy of omeprazole for the treatment of infection caused by Helicobacter pylori. Clin Pharmacol Ther 66:528–534

    Article  PubMed  CAS  Google Scholar 

  30. Roh HK, Kim PS, Lee DH, Tybring G, Sagar M, Park CS (2004) Omeprazole treatment of Korean patients: effects on gastric pH and gastrin release in relation to CYP2C19 geno- and phenotypes. Basic Clin Pharmacol Toxicol 95(3):112–119

    PubMed  CAS  Google Scholar 

  31. Yasui-Furukori N, Takahata T, Nakagami T, Yoshiya G, Inoue Y, Kaneko S (2004) Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes. Br J Clin Pharmacol 57(4):487–494

    Article  PubMed  CAS  Google Scholar 

  32. Wang LS, Zhou G, Zhu B, Wu J, Wang JG, Zhou HH (2004) St John’s wort induces both cytochrome P450 3A4-catalyzed sulfoxidation and 2C19-dependent hydroxylation of omeprazole. Clin Pharmacol Ther 75(3):191–197

    Article  PubMed  CAS  Google Scholar 

  33. Yin OQ, Tomlinson B, Waye MM, Chow AH, Chow MS (2004) Pharmacogenetics and herb-drug interactions: experience with Ginkgo biloba and omeprazole. Pharmacogenetics 14(12):841–850

    Article  PubMed  Google Scholar 

  34. Cho JY, Yu KS, Jang IJ, Yang BH, Shin SG, Yim DS (2002) Omeprazole hydroxylation is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol 53:393–397

    Article  PubMed  CAS  Google Scholar 

  35. He N, Huang SL, Zhu RH, Tan ZR, Liu J, Zhu B (2003) Inhibitory effect of troleandomycin on the metabolism of omeprazole is CYP2C19 genotype-dependent. Xenobiotica 33:211–221

    Article  PubMed  CAS  Google Scholar 

  36. Li XQ, Weidolf L, Simonsson R, Andersson TB (2005) Enantiomer/enantiomer interactions between the S- and R- isomers of omeprazole in human cytochrome P450 enzymes: major role of CYP2C19 and CYP3A4. J Pharmacol Exp Ther 315(2):777–787

    Article  PubMed  CAS  Google Scholar 

  37. Abelö A, Andersson TB, Antonsson M, Naudot AK, Skånberg I, Weidolf L (2000) Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 28(8):966–972

    PubMed  Google Scholar 

  38. Teyssier C, Guenot L, Suschetet M, Siess MH (1999) Metabolism of diallyl disulfide by human liver microsomal cytochromes P-450 and flavin-containing monooxygenases. Drug Metab Dispos 27(7):835–841

    PubMed  CAS  Google Scholar 

  39. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF (2001) Interaction of omeprazole, lansoprazole and pantoprazole with P-glyprotein. Naunyn Schmiedebergs Arch Pharmacol 364:551–557

    Article  PubMed  CAS  Google Scholar 

  40. Arora A, Seth K, Shukla Y (2004) Reversal of p-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 25(6):941–949

    Article  PubMed  CAS  Google Scholar 

  41. de Morais SM, Goldstein JA, Xie HG, Huang SL, Lu YQ, Xia H (1995) Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. Clin Pharmacol Ther 58:404–411

    Article  PubMed  CAS  Google Scholar 

  42. Jonkers D, van den Broek E, van Dooren I, Thijs C, Dorant E, Hageman G (1999) Antibacterial effect of garlic and omeprazole on Helicobacter pylori. J Antimicrob Chemother 43:837–839

    Article  CAS  Google Scholar 

Download references

Funding source

This work was supported by research grants from the National Natural Science Foundation of China 30528026, 30300428, 30672497 and 30500623, and by the China Medical Board of New York grants 01-755.

Conflict of interest

None of the authors has any conflict of interest regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Fan or Hong-Hao Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, LJ., Fan, L., Liu, ZQ. et al. Effects of allicin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes. Eur J Clin Pharmacol 65, 601–608 (2009). https://doi.org/10.1007/s00228-008-0608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0608-1

Keywords

Navigation