Skip to main content
Log in

Prediction of drug clearance in a smoking population: modeling the impact of variable cigarette consumption on the induction of CYP1A2

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To derive estimates of CYP1A2 abundance as a function of daily cigarette consumption and use these values to predict the clearances of CYP1A2 substrates in smokers.

Methods

Smoking-induced changes in hepatic CYP1A2 abundance were extrapolated from reported in vivo caffeine clearance data for sub-groups of a smoking population that were categorized according to their daily cigarette consumption. These abundance values together with in vitro–in vivo extrapolation (IVIVE) within the Simcyp population-based Simulator were used to predict the clearances of caffeine, theophylline, and clozapine in smokers. The model was used subsequently to predict differences in oral clearance between smoker and non-smoker cohorts in a Phase 1 clinical trial involving PF-2400013, a drug metabolized by CYP1A2.

Results

Estimated hepatic CYP1A2 abundance values were 52, 64, 79, 90, and 94 pmol/mg microsomal protein for subjects smoking 0, 1–5, 6–10, 11–20, and >20 cigarettes/day respectively. Predicted -fold increases in oral clearance of caffeine, theophylline and clozapine in smokers relative to non-smokers were consistent with observed data. The validated model was able to recover the smoking-induced increase in oral clearance of PF-2400013; predicted and observed mean (CV%) values in male nonsmokers and smokers were 90 L/h (40%) and 141 L/h (34%) respectively, and 100 L/h (58%) and 131 L/h (33%) respectively.

Conclusions

This study demonstrates that it may be possible to predict the clearance of CYP1A2 substrates in smoking populations using quantitative estimates of CYP1A2 abundance based on daily cigarette consumption in conjunction with an IVIVE approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97(3):125–134

    Article  PubMed  CAS  Google Scholar 

  2. Ma Q, Lu AY (2003) Origins of individual variability in P4501A induction. Chem Res Toxicol 16(3):249–260

    Article  PubMed  CAS  Google Scholar 

  3. Gunes A, Dahl ML (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9(5):625–637

    Article  PubMed  CAS  Google Scholar 

  4. Schweikl H, Taylor JA, Kitareewan S, Linko P, Nagorney D, Goldstein JA (1993) Expression of CYP1A1 and CYP1A2 genes in human liver. Pharmacogenetics 3(5):239–249

    Article  PubMed  CAS  Google Scholar 

  5. Carrillo JA, Herraiz AG, Ramos SI, Gervasini G, Vizcaino S, Benitez J (2003) Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 23(2):119–127

    Article  PubMed  CAS  Google Scholar 

  6. Obase Y, Shimoda T, Kawano T, Saeki S, Tomari SY, Mitsuta IK, Matsuse H, Kinoshita M, Kohno S (2003) Polymorphisms in the CYP1A2 gene and theophylline metabolism in patients with asthma. Clin Pharmacol Ther 73(5):468–474

    Article  PubMed  CAS  Google Scholar 

  7. Sachse C, Bhambra U, Smith G, Lightfoot TJ, Barrett JH, Scollay J, Garner RC, Boobis AR, Wolf CR, Gooderham NJ, Colorectal Cancer Study G (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene CYP1A2 in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55(1):68–76

    Article  PubMed  CAS  Google Scholar 

  8. Van der Weide J, Steijns LS, van Weelden MJ (2003) The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics 13(3):169–172

    Article  PubMed  Google Scholar 

  9. Dobrinas M, Cornuz J, Oneda B, Kohler Serra M, Puhl M, Eap CB (2011) Impact of smoking, smoking cessation, and genetic polymorphisms on CYP1A2 activity and inducibility. Clin Pharmacol Ther 90 (1):117–125

    Article  PubMed  CAS  Google Scholar 

  10. Bondolfi G, Morel F, Crettol S, Rachid F, Baumann P, Eap CB (2005) Increased clozapine plasma concentrations and side effects induced by smoking cessation in 2 CYP1A2 genotyped patients. Therapeutic Drug Monit 27(4):539–543

    Article  CAS  Google Scholar 

  11. Haslemo T, Eikeseth PH, Tanum L, Molden E, Refsum H (2006) The effect of variable cigarette consumption on the interaction with clozapine and olanzapine. Eur J Clin Pharmacol 62(12):1049–1053

    Article  PubMed  CAS  Google Scholar 

  12. McCarthy RH (1994) Seizures following smoking cessation in a clozapine responder. Pharmacopsychiatry 27(5):210–211

    Article  PubMed  CAS  Google Scholar 

  13. Bigos KL, Pollock BG, Coley KC, Miller DD, Marder SR, Aravagiri M, Kirshner MA, Schneider LS, Bies RR (2008) Sex, race, and smoking impact olanzapine exposure. J Clin Pharmacol 48(2):157–165

    Article  PubMed  CAS  Google Scholar 

  14. FDA (2003) Guidance document: exposure-response relationships—study design, data analysis and final regulatory applications

  15. EMA (2010) Draft guidance on drug interactions

  16. Edginton AN, Willmann S (2008) Physiology-based simulations of a pathological condition: prediction of pharmacokinetics in patients with liver cirrhosis. Clin Pharmacokinet 47(11):743–752

    Article  PubMed  Google Scholar 

  17. Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A (2010) A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet 49(3):189–206

    Article  PubMed  CAS  Google Scholar 

  18. Houston JB (1994) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47(9):1469–1479

    Article  PubMed  CAS  Google Scholar 

  19. Howgate EM, Rowland Yeo K, Proctor NJ, Tucker GT, Rostami-Hodjegan A (2006) Prediction of in vivo drug clearance from in vitro data. I. Impact of inter-individual variability. Xenobiotica 36(6):473–497

    Article  PubMed  CAS  Google Scholar 

  20. Jamei M, Marciniak S, Feng K, Barnett A, Tucker G, Rostami-Hodjegan A (2009) The Simcyp population-based ADME simulator. Expert Opinion Drug Metab Toxicol 5(2):211–223

    Article  CAS  Google Scholar 

  21. Jamei M, Dickinson GL, Rostami-Hodjegan A (2009) A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: A tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. [Review] [150 refs] [Erratum appears in Drug Metab Pharmacokinet. 2009;24(5):488]. Drug Metab Pharmacokinet 24(1):53–75

    Article  PubMed  CAS  Google Scholar 

  22. Rowland-Yeo K, Rostami-Hodjegan A, Tucker GT (2004) Abundance of cytochrome P450 in human liver: a meta-analysis. Br J Clin Pharmacol 57(5):687

    Google Scholar 

  23. Barter ZE, Bayliss MK, Beaune PH, Boobis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. [Review] [80 references]. Curr Drug Metabol 8(1):33–45

    Article  CAS  Google Scholar 

  24. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A (2005) Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transpl 11(12):1481–1493

    Article  PubMed  Google Scholar 

  25. Parkinson A, Mudra DR, Johnson C, Dwyer A, Carroll KM (2004) The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 199(3):193–209

    Article  PubMed  CAS  Google Scholar 

  26. Tantcheva-Poór I, Zaigler M, Rietbrock S, Fuhr U (1999) Estimation of cytochrome P-450 CYP1A2 activity in 863 healthy Caucasians using a saliva-based caffeine test. Pharmacogenetics 9(2):131–144

    PubMed  Google Scholar 

  27. Blanchard J, Sawers SJ (1983) The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 24(1):93–98

    Article  PubMed  CAS  Google Scholar 

  28. Terziivanov D, Bozhinova K, Dimitrova V, Atanasova I (2003) Nonparametric expectation maximisation (NPEM) population pharmacokinetic analysis of caffeine disposition from sparse data in adult Caucasians: systemic caffeine clearance as a biomarker for cytochrome P450 1A2 activity. Clin Pharmacokinet 42(15):1393–1409

    Article  PubMed  CAS  Google Scholar 

  29. Hunt SN, Jusko WJ, Yurchak AM (1976) Effect of smoking on theophylline disposition. Clin Pharmacol Ther 19(5 Pt 1):546–551

    PubMed  CAS  Google Scholar 

  30. Gardner MJ, Tornatore KM, Jusko WJ, Kanarkowski R (1983) Effects of tobacco smoking and oral contraceptive use on theophylline disposition. Br J Clin Pharmacol 16(3):271–280

    PubMed  CAS  Google Scholar 

  31. Jennings TS, Nafziger AN, Davidson L, Bertino JS Jr (1993) Gender differences in hepatic induction and inhibition of theophylline pharmacokinetics and metabolism. J Lab Clin Med 122(2):208–216

    PubMed  CAS  Google Scholar 

  32. Seppälä NH, Leinonen EV, Lehtonen ML, Kivistö KT (1999) Clozapine serum concentrations are lower in smoking than in non-smoking schizophrenic patients. Pharmacol Toxicol 85(5):244–246

    Article  PubMed  Google Scholar 

  33. Rostami HA, Amin AM, Spencer EP, Lennard MS, Tucker GT, Flanagan RJ (2004) Influence of dose, cigarette smoking, age, sex, and metabolic activity on plasma clozapine concentrations: a predictive model and nomograms to aid clozapine dose adjustment and to assess compliance in individual patients. J Clin Psychopharmacol 24(1):70–78

    Article  Google Scholar 

  34. Palego L, Biondi L, Giannaccini G, Sarno N, Elmi S, Ciapparelli A, Cassano GB, Lucacchini A, Martini C, Dell OL (2002) Clozapine, norclozapine plasma levels, their sum and ratio in 50 psychotic patients: influence of patient-related variables. Prog Neuropsychopharmacol Biol Psychiatry 26(3):473–480

    Article  PubMed  CAS  Google Scholar 

  35. Rostami-Hodjegan A, Kroemer HK, Tucker GT (1999) In-vivo indices of enzyme activity: the effect of renal impairment on the assessment of CYP2D6 activity. Pharmacogenetics 9(3):277–286

    Article  PubMed  CAS  Google Scholar 

  36. Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E (2008) Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol 64(4):381–385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the PF-2400013 clinical team for providing the internal validation data sets for smoker and nonsmokers from the Phase 1 study for PF-2400013.

Competing interests

KRY is an employee of and a shareholder of the company Simcyp Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Plowchalk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plowchalk, D.R., Rowland Yeo, K. Prediction of drug clearance in a smoking population: modeling the impact of variable cigarette consumption on the induction of CYP1A2. Eur J Clin Pharmacol 68, 951–960 (2012). https://doi.org/10.1007/s00228-011-1189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-011-1189-y

Keywords

Navigation