Skip to main content
Log in

Epigenetic Silencing May Aid Evolution by Gene Duplication

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Gene duplication is commonly regarded as the main evolutionary path toward the gain of a new function. However, even with gene duplication, there is a loss-versus-gain dilemma: most newly born duplicates degrade to pseudogenes, since degenerative mutations are much more frequent than advantageous ones. Thus, something additional seems to be needed to shift the loss versus gain equilibrium toward functional divergence. We suggest that epigenetic silencing of duplicates might play this role in evolution. This study began when we noticed in a previous publication (Lynch M, Conery JS [2000] Science 291:1151–1155) that the frequency of functional young gene duplicates is higher in organisms that have cytosine methylation (H. sapiens, M. musculus, and A. thaliana) than in organisms that do not have methylated genomes (S. cerevisiae, D. melanogaster, and C. elegans). We find that genome data analysis confirms the likelihood of much more efficient functional divergence of gene duplicates in mammals and plants than in yeast, nematode, and fly. We have also extended the classic model of gene duplication, in which newly duplicated genes have exactly the same expression pattern, to the case when they are epigenetically silenced in a tissue- and/or developmental stage-complementary manner. This exposes each of the duplicates to negative selection, thus protecting from “pseudogenization.” Our analysis indicates that this kind of silencing (i) enhances evolution of duplicated genes to new functions, particularly in small populations, (ii) is quite consistent with the subfunctionalization model when degenerative but complementary mutations affect different subfunctions of the gene, and (iii) furthermore, may actually cooperate with the DDC (duplication– degeneration–complementation) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. AC Bell G Felsenfeld (2000) ArticleTitleMethylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 482–485 Occurrence Handle10.1038/35013100 Occurrence Handle1:CAS:528:DC%2BD3cXjslykuro%3D Occurrence Handle10839546

    Article  CAS  PubMed  Google Scholar 

  2. KE Brown S Amoils JM Horn VJ Buckle DR Higgs M Merkenschlager AG Fisher (2001) ArticleTitleExpression of α-and β-globin genes occurs within different nuclear domains in haemopoetic cells. Nature Cell Biol 3 602–606 Occurrence Handle1:CAS:528:DC%2BD3MXksFelurc%3D

    CAS  Google Scholar 

  3. C-h Chiu C Amemiya K Dewar C-B Kim FH Ruddle GP Wagner (2002) ArticleTitleMolecular evolution of the HoxA cluster in the three major gnathostome lineages. Proc Natl Acad Sci USA 99 5492–5497 Occurrence Handle10.1073/pnas.052709899 Occurrence Handle1:CAS:528:DC%2BD38XjtFKltrw%3D

    Article  CAS  Google Scholar 

  4. AG Clark (1994) ArticleTitleInvasion and maintenance of a gene duplication. Proc Natl Acad Sci USA 91 2950–2954 Occurrence Handle1:CAS:528:DyaK2cXktVantrs%3D Occurrence Handle8159686

    CAS  PubMed  Google Scholar 

  5. M Cockell SM Gasser (1999) ArticleTitleNuclear compartments and gene regulation. Curr Opin Genet Dev 9 199–205 Occurrence Handle1:CAS:528:DyaK1MXisFyqtLk%3D Occurrence Handle10322139

    CAS  PubMed  Google Scholar 

  6. J Crow M Kimura (1970) Introduction to population genetics theory. Harper and Row New York

    Google Scholar 

  7. RB Flavell (1994) ArticleTitleInactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA 91 3490–3496 Occurrence Handle1:CAS:528:DyaK2cXktVajsLo%3D Occurrence Handle8170935

    CAS  PubMed  Google Scholar 

  8. A Force M Lynch B Pickett A Amores Y-l Yan J Postlethwait (1999) ArticleTitlePreservation of duplicate genes by complementary, degenerative mutations. Genetics 151 1531–1545 Occurrence Handle1:CAS:528:DyaK1MXisV2rs7o%3D Occurrence Handle10101175

    CAS  PubMed  Google Scholar 

  9. Z Gu D Nicolae H Lu W-H Li (2002a) ArticleTitleRapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18 609–613 Occurrence Handle1:CAS:528:DC%2BD38XoslCgur0%3D

    CAS  Google Scholar 

  10. Z Gu A Cavalcanti F-C Chen P Bouman W-H Li (2002b) ArticleTitleExtent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol 19 256–262 Occurrence Handle1:CAS:528:DC%2BD38XitFSnsL4%3D

    CAS  Google Scholar 

  11. R Hardison (1998) ArticleTitleHemoglobin from bacteria to man: Evolution of different patterns of gene expression. J Exp Biol 201 1099–1117 Occurrence Handle1:CAS:528:DyaK1cXjvVOhsbg%3D Occurrence Handle9510523

    CAS  PubMed  Google Scholar 

  12. PM Harrison A Kumar N Lang M Snyder M Gerstein (2002) ArticleTitleA question of size: The eukaryotic proteome and the problems in defining it. Nucleic Acids Res 30 1083–1090 Occurrence Handle1:CAS:528:DC%2BD38XitVOisLc%3D Occurrence Handle11861898

    CAS  PubMed  Google Scholar 

  13. R Holliday JE Pugh (1975) ArticleTitleDNA modification mechanisms and gene activity during development. Science 187 226–232 Occurrence Handle1:CAS:528:DyaE2MXht1Sitrw%3D Occurrence Handle1111098

    CAS  PubMed  Google Scholar 

  14. AL Hughes (1999) ArticleTitlePhylogenies of developmentally important proteins do not support the hypothesis of two rounds of genome duplication early in vertebrate history. J Mol Evol 48 565–576 Occurrence Handle1:CAS:528:DyaK1MXisFGis7o%3D Occurrence Handle10198122

    CAS  PubMed  Google Scholar 

  15. T Jenuwein CD Allis (2001) ArticleTitleTranslating the histone code. Science 293 1074–1080 Occurrence Handle1:CAS:528:DC%2BD3MXmtVWltro%3D Occurrence Handle11498575

    CAS  PubMed  Google Scholar 

  16. M Kimura (1971) ArticleTitleTheoretical foundation of population genetics at the molecular level. Theor Popul Biol 2 174–208 Occurrence Handle1:STN:280:CSyB2cbntVA%3D Occurrence Handle5162686

    CAS  PubMed  Google Scholar 

  17. M Kimura (1983) The neutral theory of molecular evolution. Cambridge University Press Cambridge

    Google Scholar 

  18. M Kimura JL King (1979) ArticleTitleFixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc Natl Acad Sci USA 76 2858–2861 Occurrence Handle1:STN:280:CSaB38zovV0%3D Occurrence Handle288072

    CAS  PubMed  Google Scholar 

  19. H-S Lee Z Chen (2001) ArticleTitleProtein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc Natl Acad Sci USA 98 6753–6758 Occurrence Handle1:CAS:528:DC%2BD3MXksVOku7w%3D Occurrence Handle11371624

    CAS  PubMed  Google Scholar 

  20. W-H Li (1997) Molecular evolution. Sinauer Associates Sunderland, MA

    Google Scholar 

  21. W-H Li Z Gu H Wang A Nekrutenko (2001) ArticleTitleEvolutionary analysis of the human genome. Nature 409 847–849 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCjtL4%3D Occurrence Handle11237007

    CAS  PubMed  Google Scholar 

  22. M Lynch JS Conery (2000) ArticleTitleThe evolutionary fate and consequences of duplicate genes. Science 290 1151–1155 Occurrence Handle10.1126/science.290.5494.1151 Occurrence Handle1:CAS:528:DC%2BD3cXotVChsb8%3D Occurrence Handle11073452

    Article  CAS  PubMed  Google Scholar 

  23. M Lynch A Force (2000) ArticleTitleThe probability of duplicate gene preservation by subfunctionalization. Genetics 154 459–473 Occurrence Handle1:CAS:528:DC%2BD3cXms1KhsA%3D%3D Occurrence Handle10629003

    CAS  PubMed  Google Scholar 

  24. M Lynch M O’Hely B Walsh A Force (2001) ArticleTitleThe probability of preservation of a newly arisen gene duplicate. Genetics 159 1789–1804

    Google Scholar 

  25. A Mounsey P Bauer IA Hope (2002) ArticleTitleEvidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes. Genome Res 12 770–775 Occurrence Handle1:CAS:528:DC%2BD38XjvFSgtL0%3D Occurrence Handle11997343

    CAS  PubMed  Google Scholar 

  26. JH Nadeau D Sankoff (1997) ArticleTitleComparative rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147 1259–1266 Occurrence Handle1:STN:280:DyaK1c%2FktlCitA%3D%3D Occurrence Handle9383068

    CAS  PubMed  Google Scholar 

  27. M Nei AK Roychoudhury (1973) ArticleTitleProbability of fixation of nonfunctional genes at duplicate loci. Am Nat 107 362–372

    Google Scholar 

  28. S Ohno (1970) Evolution by gene duplication. Springer Berlin

    Google Scholar 

  29. T Ohta (1987) ArticleTitleSimulating evolution by gene duplication. Genetics 115 207–213 Occurrence Handle1:STN:280:BiiC28zksVM%3D Occurrence Handle3557113

    CAS  PubMed  Google Scholar 

  30. VA Ratner AA Zharkikh NA Kolchanov SN Rodin VV Solovyov AS Antonov (1996) Molecular evolution. Springer Berlin

    Google Scholar 

  31. AD Riggs (1975) ArticleTitleX-inactivation, differentiation and DNA methylation. Cytogenet Cell Genet 14 9–25

    Google Scholar 

  32. AD Riggs TN Porter (1996) Overview of epigenetic mechanisms. EA Russo RA Martienssen AD Riggs (Eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press New York 29–45

    Google Scholar 

  33. SN Rodin (1991) Idea of coevolution. Nauka Novosibirsk (in Russian)

    Google Scholar 

  34. JL Rossignol G Faugeron (1994) ArticleTitleGene inactivation triggered by recognition between DNA repeats. Experientia 50 307–317 Occurrence Handle1:CAS:528:DyaK2cXjtFKktb0%3D Occurrence Handle8143804

    CAS  PubMed  Google Scholar 

  35. A Sadhu ML Shen M Hackbarth E Hume TW McKeithan (1997) ArticleTitleCpG-rich sequences close to the site of duplication within the human IGH constant region. Immunogenetics 45 365–370 Occurrence Handle1:CAS:528:DyaK2sXjt12ltrs%3D Occurrence Handle9089093

    CAS  PubMed  Google Scholar 

  36. N Skaer D Pistillo J-M Gibert P Lio C Wulbeck P Simpson () ArticleTitleGene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera. Trends Genet 18 399–405

    Google Scholar 

  37. S Tweedie J Charlton V Clark A Bird (1997) ArticleTitleMethylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 17 1469–1475 Occurrence Handle1:CAS:528:DyaK2sXhtlGmsLg%3D Occurrence Handle9032274

    CAS  PubMed  Google Scholar 

  38. JC Venter et al. (2001) ArticleTitleThe sequence of the human genome. Science 21 1304–1351

    Google Scholar 

  39. A Wagner (1998) ArticleTitleThe fate of duplicated genes: loss or new function? BioEssays 20 785–788 Occurrence Handle10.1002/(SICI)1521-1878(199810)20:10<785::AID-BIES2>3.0.CO;2-M Occurrence Handle1:STN:280:DyaK1M3gs1emug%3D%3D Occurrence Handle10200118

    Article  CAS  PubMed  Google Scholar 

  40. A Wagner (2001) ArticleTitleBirth and death of duplicated genes in completely sequenced eukaryotes. Trends Genet 17 237–239 Occurrence Handle1:CAS:528:DC%2BD3MXjtFCltbo%3D Occurrence Handle11335019

    CAS  PubMed  Google Scholar 

  41. JB Walsh (1995) ArticleTitleHow often do duplicated genes evolve new functions? Genetics 139 421–428 Occurrence Handle1:STN:280:ByqB38%2FmvVQ%3D Occurrence Handle7705642

    CAS  PubMed  Google Scholar 

  42. KH Wolfe (2001) ArticleTitleYesterday’s polyploids and the mystery of diplodization. Nature Rev Genet 2 333–341 Occurrence Handle1:CAS:528:DC%2BD3MXjtlGjs7g%3D

    CAS  Google Scholar 

  43. AP Wolffe MA Matzke (1999) ArticleTitleEpigenetics: Regulation through repression. Science 286 481–486

    Google Scholar 

Download references

Acknowledgements

We are very thankful to Andrew Rodin for valuable suggestions and help with the statistical treatment of data. This work was supported by NIH Grant GM 50575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei N. Rodin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodin, S.N., Riggs, A.D. Epigenetic Silencing May Aid Evolution by Gene Duplication . J Mol Evol 56, 718–729 (2003). https://doi.org/10.1007/s00239-002-2446-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-002-2446-6

Keywords

Navigation