Skip to main content
Log in

Microbial P450 enzymes in biotechnology

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aitio A (1978) A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem 85(2):488–491

    CAS  PubMed  Google Scholar 

  • Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88(2):167–171

    Article  CAS  PubMed  Google Scholar 

  • Atkins WM, Sligar SG (1988a) Deuterium isotope effects in norcamphor metabolism by cytochrome P-450cam: kinetic evidence for the two-electron reduction of a high-valent iron-oxo intermediate. Biochemistry 27(5):1610–1616

    CAS  PubMed  Google Scholar 

  • Atkins WM, Sligar SG (1988b) The roles of active site hydrogen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis. J Biol Chem 263(35):11842–11849

    Google Scholar 

  • Atkins WM, Sligar SG (1990) Tyrosine-96 as a natural spectroscopic probe of the cytochrome P-450cam active site. Biochemistry 29(5):1271–1275

    CAS  PubMed  Google Scholar 

  • Azari MR, Wiseman A (1980) Solubilization of cytochrome P450 in a high yield from Saccharomyces cerivisiae microsomal membrane: stabilization effect. Biochem Soc Trans 8:713–714

    CAS  PubMed  Google Scholar 

  • Bathelt C, Schmid RD, Pleiss J (2002) Regioselectivity of CYP2B6: homology modeling, molecular dynamics simulation, docking. J Mol Model 8:327–335

    Article  CAS  Google Scholar 

  • Bell SG, Harford-Cross CF, Wong LL (2001) Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 14(10):797–802

    Article  CAS  PubMed  Google Scholar 

  • Bell SG, Stevenson JA, Boyd HD, Campbell S, Riddle AD, Orton EL, Wong LL (2002) Butane and propane oxidation by engineered cytochrome P450cam. Chem Commun (Camb) 5:490–491

    Google Scholar 

  • Bell SG, Chen X, Xu F, Rao Z, Wong LL (2003a) Engineering substrate recognition in catalysis by cytochrome P450cam. Biochem Soc Trans 31(3):558–562

    CAS  PubMed  Google Scholar 

  • Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z (2003b) Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. J Am Chem Soc 125(3):705–714

    Article  CAS  PubMed  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2247–2253

    Google Scholar 

  • Black SD, Linger MH, Freck LC, Kazemi S, Galbraith JA (1994) Affinity isolation and characterization of cytochrome P450 102 (BM-3) from barbiturate-induced Bacillus megaterium. Arch Biochem Biophys 310(1):126–133

    Article  CAS  PubMed  Google Scholar 

  • Boddupalli SS, Estabrook RW, Peterson JA (1990) Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem 265(8):4233–4239

    CAS  PubMed  Google Scholar 

  • Capdevila JH, Wei S, Helvig C, Falck JR, Belosludtsev Y, Truan G, Graham-Lorence SE, Peterson JA (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem 271(37):22663–22671

    Article  CAS  PubMed  Google Scholar 

  • Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268(10):3117–3125

    Article  CAS  PubMed  Google Scholar 

  • Cirino PC, Arnold FH (2002) Regioselectivity and activity of cytochrome P450 BM-3 and mutant F87A in reactions driven by hydrogen peroxide. Adv Synth Catal 344:932–937

    Article  CAS  Google Scholar 

  • Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed Engl 42(28):3299–3301

    Article  CAS  PubMed  Google Scholar 

  • Coon MJ, Vaz AD, Bestervelt LL (1996) Cytochrome P450 2: peroxidative reactions of diversozymes. FASEB J 10(4):428–434

    CAS  PubMed  Google Scholar 

  • Cowart LA, Falck JR, Capdevila JH (2001) Structural determinants of active site binding affinity and metabolism by cytochrome P450 BM-3. Arch Biochem Biophys 387(1):117–124

    Article  CAS  PubMed  Google Scholar 

  • Cupp-Vickery JR, Poulos TL (1995) Structure of cytochrome P450eryF involved in erythromycin biosynthesis. Nat Struct Biol 2(2):144–153

    CAS  PubMed  Google Scholar 

  • Dai R, Pincus MR, Friedman FK (1998) Molecular modeling of cytochrome P450 2B1: mode of membrane insertion and substrate specificity. J Protein Chem 17:121–129

    Article  CAS  PubMed  Google Scholar 

  • Delcarte J, Fauconnier ML, Jacques P, Matsui K, Thonart P, Marlier M (2003) Optimisation of expression and immobilized metal ion affinity chromatographic purification of recombinant (His)(6)-tagged cytochrome P450 hydroperoxide lyase in Escherichia coli. J Chromatogr B Analyt Technol Biomed Life Sci 786:229–236

    Article  CAS  PubMed  Google Scholar 

  • DeLuca JG, Dysart GR, Rasnick D, Bradley MO (1988) A direct, highly sensitive assay for cytochrome P-450 catalyzed O-deethylation using a novel coumarin analog. Biochem Pharmacol 37(9):1731–1739

    Article  CAS  PubMed  Google Scholar 

  • Dingler C, Ladner W, Krei G, Cooper B, Hauer B (1996) Preparation of (R)-2-(4-hydroxyphenoxypropionic acid by biotransformation. Pestic Sci 46:33–35

    Article  CAS  Google Scholar 

  • Duport C, Spagnoli R, Degryse E, Pompon D (1998) Self-sufficient biosynthesis of pregnenolone and progesterone in engineered yeast. Nat Biotechnol 16(2):186–189

    CAS  PubMed  Google Scholar 

  • England PA, Harford-Cross CF, Stevenson JA, Rouch DA, Wong LL (1998) The oxidation of naphthalene and pyrene by cytochrome P450cam. FEBS Lett 424(3):271–274

    Article  CAS  PubMed  Google Scholar 

  • Estabrook RW, Shet MS, Faulkner KM, Fisher CW (1996a) The use of electrochemistry for the synthesis of 17 alpha-hydroxyprogesterone by a fusion protein containing P450c17. Endocr Res 22:665–671

    CAS  PubMed  Google Scholar 

  • Estabrook RW, Shet MS, Fisher CW, Jenkins CM, Waterman MR (1996b) The interaction of NADPH-P450 reductase with P450: an electrochemical study of the role of the flavin mononucleotide-binding domain. Arch Biochem Biophys 333:308–315

    Article  CAS  PubMed  Google Scholar 

  • Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996c) Applications of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–51

    CAS  PubMed  Google Scholar 

  • Fang X, Halpert RJ (1996) Dithionite-supported hydroxylation of palmitic acid by cytochrome P450 BM-3. Drug Metab Dispos 24:1282–1285.

    CAS  PubMed  Google Scholar 

  • Farinas ET, Schwaneberg U, Glieder A, Arnold FH (2001) Directed evolution of a cytochrome P450 monooxygenase for alkane oxidation. Adv Synth Catal 343:601–606

    Article  CAS  Google Scholar 

  • Fernandez-Salguero P, Gutierrez-Merino C, Bunch AW (1993) Effect of immobilization on the activity of rat hepatic microsomal cytochrome P450 enzymes. Enzyme Microb Technol 15(2):100–104

    Article  CAS  PubMed  Google Scholar 

  • Gilardi G, Meharenna YT, Tsotsou GE, Sadeghi SJ, Fairhead M, Giannini S (2002) Molecular Lego: design of molecular assemblies of P450 enzymes for nanobiotechnology. Biosens Bioelectron 17(1–2):133–145

    Google Scholar 

  • Gill I (2001) Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem Mater 13:3404–3421

    Article  CAS  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20(11):1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Graham SE, Peterson JA (1999) How similar are P450s and what can their differences teach us. Arch Biophys Biochem 369:24–29

    Article  CAS  Google Scholar 

  • Graham-Lorence S, Truan G, Peterson JA, Falck JR, Wei S, Helvig C, Capdevila JH (1997) An active site substitution, F87 V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J Biol Chem 272(2):1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Harford-Cross CF, Carmichael AB, Allan FK, England PA, Rouch DA, Wong L-L (2000) Protein engineering of cytochrome P450cam (CYP101) for the oxidation of polycyclic aromatic hydrocarbons. Prot Eng 13(2):121–128

    Article  CAS  Google Scholar 

  • Hasemann CA, Ravichandran KG, Peterson JA, Deisenhofer J (1994) Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol 236(4):1169–1185

    CAS  PubMed  Google Scholar 

  • Hata M, Hirano Y, Hoshino T, Tsuda M (2001) Monooxygenation mechanism by cytochrome p-450. J Am Chem Soc 123(26):6410–6416

    Article  CAS  PubMed  Google Scholar 

  • Hollmann F, Witholt B, Schmid A (2002) [cp*Rh(bpy)(H2O)]2+: a versatile tool for efficient and non-enzymatic regeneration of nicotinamide and flavin coenzymes. J Mol Cat B Enzym 791:1–10

    Google Scholar 

  • Hummel W, Kula M-R (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1–13

    CAS  PubMed  Google Scholar 

  • Joo H, Lin Z, Arnold FH (1999) Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 399:670–673

    Article  CAS  PubMed  Google Scholar 

  • Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of of cytochrome P450cam. Chem Commun 18:2189–2190

    Google Scholar 

  • King DL, Azari MR, Wiseman A (1988) Immobilization of cytochrome P-450 enzyme from Saccharomyces cerevisiae. Methods Enzymol 137:675–686

    CAS  PubMed  Google Scholar 

  • Kitazume T, Takaya N, Nakayama N, Shoun H (2000) Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem 275(50):39734–39740

    Article  CAS  PubMed  Google Scholar 

  • Klotz AV, Stegeman JJ, Walsh C (1984) An alternative 7-ethoxyresorufin O-deethylase activity assay: a continuous visible spectrophotometric method for measurement of cytochrome P-450 monooxygenase activity. Anal Biochem 140(1):138–145

    CAS  PubMed  Google Scholar 

  • Koebe HG, Pahernik S, Eyer P, Schildberg FW (1994a) Collagen gel immobilization: a useful cell culture technique for long-term metabolic studies on human hepatocytes. Xenobiotica 24(2):95–107

    CAS  PubMed  Google Scholar 

  • Koebe HG, Wick M, Cramer U, Lange V, Schildberg FW (1994b) Collagen gel immobilisation provides a suitable cell matrix for long term human hepatocyte cultures in hybrid reactors. Int J Artif Organs 17(2):95–106

    CAS  PubMed  Google Scholar 

  • Ladner W, Staudenmaier HR, Hauer B, Müller U, Pressler U, Meyer J, Siegel H (1999). Process for the hydroxylation of aromatic acids using strains of the fungus Beauveria. US Patent, 5,928,912, 27 July 1999

  • Lee TR, Hsu HP, Shaw GC (2001) Transcriptional regulation of the Bacillus subtilis bscR-CYP102A3 operon by the BscR repressor and differential induction of cytochrome CYP102A3 expression by oleic acid and palmitate. J Biochem (Tokyo) 130(4):569–574

    Google Scholar 

  • Lei C, Wollenberger U, Jung C, Scheller FW (2000) Clay-bridged electron transfer between cytochrome p450(cam) and electrode. Biochem Biophys Res Commun 268(3):740–744

    Article  CAS  PubMed  Google Scholar 

  • Lentz O, Li Q-S, Schwaneberg U, Lutz-Wahl S, Fischer P, Schmid RD (2001) Modification of the fatty acid specificity of cytochrome P450BM-3 from Bacillus megaterium by directed evolution: a validated assay. J Mol Cat B Enzym 15:123–133

    Article  CAS  Google Scholar 

  • Li H, Poulos TL (1997) The structure of the cytochrome p450BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4(2):140–146

    CAS  PubMed  Google Scholar 

  • Li H, Poulos TL (1999) Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3). Biochim Biophys Acta 1441(2–3):141–149

    Google Scholar 

  • Li QS, Ogawa J, Schmid RD, Shimizu S (2001a) Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67(12):5735–5739

    Article  CAS  PubMed  Google Scholar 

  • Li QS, Ogawa J, Schmid RD, Shimizu S (2001b) Residue size at position 87 of cytochrome P450 BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation. FEBS Lett 508(2):249–252

    Article  CAS  PubMed  Google Scholar 

  • Maurer SC, Schulze H, Schmid RD, Urlacher V (2003) Immobilisation of P450BM-3 and an NADP(+) cofactor recycling system: Towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv Synth Catal 345:802–810

    Article  CAS  Google Scholar 

  • McLean KJ, Cheesman MR, Rivers SL, Richmond A, Leys D, Chapman SK, Reid GA, Price NC, Kelly SM, Clarkson J, Smith WE, Munro AW (2002) Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem 91(4):527–541

    Article  CAS  PubMed  Google Scholar 

  • Miles JS, Munro AW, Rospendowski BN, Smith WE, McKnight J, Thomson AJ (1992) Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization. Biochem J 288 (2):503–509

    CAS  PubMed  Google Scholar 

  • Miura Y, Fulco AJ (1975) Omega-1, omega-2 and omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim Biophys Acta 388(3):305–317

    Article  CAS  PubMed  Google Scholar 

  • Munro AW, Daff S, Coggins JR, Lindsay JG, Chapman SK (1996) Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Eur J Biochem 239(2):403–409

    CAS  PubMed  Google Scholar 

  • Nakahara K, Shoun H, Adachi S, Iizuka T, Shiro Y (1994) Crystallization and preliminary X-ray diffraction studies of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum. J Mol Biol 239(1):158–159

    Article  CAS  PubMed  Google Scholar 

  • Naqui A, Chance B, Cadenas E (1986) Reactive oxygen intermediates in biochemistry. Ann Rev Biochem 55:137–166

    Article  CAS  PubMed  Google Scholar 

  • Nickerson DP, Harford-Cross CF, Fulcher SR, Wong LL (1997) The catalytic activity of cytochrome P450cam towards styrene oxidation is increased by site-specific mutagenesis. FEBS Lett 405(2):153–156

    Article  CAS  PubMed  Google Scholar 

  • Oliver CF, Modi S, Sutcliffe MJ, Primrose WU, Lian LY, Roberts GC (1997) A single mutation in cytochrome P450 BM3 changes substrate orientation in a catalytic intermediate and the regiospecificity of hydroxylation. Biochemistry 36(7):1567–1572

    Article  CAS  PubMed  Google Scholar 

  • Oster T, Boddupalli SS, Peterson JA (1991) Expression, purification, and properties of the flavoprotein domain of cytochrome P-450BM-3. Evidence for the importance of the amino-terminal region for FMN binding. J Biol Chem 266(33):22718–22725

    CAS  PubMed  Google Scholar 

  • Park SY, Yamane K, Adachi S, Shiro Y, Weiss KE, Sligar SG (2000) Crystallization and preliminary X-ray diffraction analysis of a cytochrome P450 (CYP119) from Sulfolobus solfataricus. Acta Crystallogr D Biol Crystallogr 56(9):1173–1175

    Article  PubMed  Google Scholar 

  • Peters MW, Meinhold P, Glieder A, Arnold FH (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 125(44):13442–13450

    Article  CAS  PubMed  Google Scholar 

  • Peterson JA, Graham SE (1998) A close family resemblance: the importance of structure in understanding cytochromes P450. Structure 6(9):1079–1085

    CAS  PubMed  Google Scholar 

  • Petzoldt K, Annen K, Laurent H, Wiechert R (1982). Process for the preparation of 11-beta-hydroxy steroids. US Patent, 4,353,985, 12 October 1982

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids. Biotechnology (N Y) 10(8):894–898

    Google Scholar 

  • Podust LM, Poulos TL, Waterman MR (2001) Crystal structure of cytochrome P450 14alpha -sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc Natl Acad Sci U S A 98(6):3068–3073

    Article  CAS  PubMed  Google Scholar 

  • Podust LM, Kim Y, Arase M, Neely BA, Beck BJ, Bach H, Sherman DH, Lamb DC, Kelly SL, Waterman MR (2003) The 1.92-A structure of Streptomyces coelicolor A3(2) CYP154C1. A new monooxygenase that functionalizes macrolide ring systems. J Biol Chem 278(14):12214–12221

    Article  CAS  PubMed  Google Scholar 

  • Poulos TL, Finzel BC, Howard AJ (1986) Crystal structure of substrate-free Pseudomonas putida cytochrome P-450. Biochemistry 25(18):5314–5322

    CAS  PubMed  Google Scholar 

  • Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci U S A 94(25):13554–13558

    Article  CAS  PubMed  Google Scholar 

  • Rock D, Jones JP (2001) Inexpensive purification of P450 reductase and other proteins using 2′,5′-adenosine diphosphate agarose affinity columns. Protein Expr Purif 22(1):82–83

    Article  CAS  PubMed  Google Scholar 

  • Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) The catalytic pathway of cytochrome p450cam at atomic resolution. Science 287(5458):1615–1622

    CAS  PubMed  Google Scholar 

  • Schwaneberg U, Sprauer A, Schmidt-Dannert C, Schmid RD (1999a) P450 monooxygenase in biotechnology. I. Single-step, large-scale purification method for cytochrome P450 BM-3 by anion-exchange chromatography. J Chromatogr A 848(1–2):149–159

    Google Scholar 

  • Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999b) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal Biochem 269(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Schwaneberg U, Appel D, Schmitt J, Schmid RD (2000) P450 in biotechnology: zinc driven omega-hydroxylation of p-nitrophenoxydodecanoic acid using P450 BM-3 F87A as a catalyst. J Biotechnol 84(3):249–257

    Article  CAS  PubMed  Google Scholar 

  • Schwaneberg U, Otey C, Cirino PC, Farinas E, Arnold FH (2001) Cost-effective whole-cell assay for laboratory evolution of hydroxylases in Escherichia coli. J Biomol Screen 6(2):111–117

    Article  CAS  PubMed  Google Scholar 

  • Seelbach K, Riebel B, Hummel W, Kula M-R, Tishkov VI, Egorov AM, Wandrey C, Kragl U (1996) A novel, efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Lett 37(9):1377–1380

    Article  CAS  Google Scholar 

  • Sone T, Isobe M, Takabatake E, Ozawa N, Watabe T (1989) 7-ethenyloxycoumarin as a new substrate for fluorophotometric assay of hepatic microsomal epoxidizing activities. J Pharmacobiodyn 12(3):149–158

    CAS  PubMed  Google Scholar 

  • Stevenson J-A, Westlake ACG, Whittock C, Wong L-L (1996) The catalytic oxidation of linear and branched alkanes by cytochrome P450cam. J Am Chem Soc 118:12846–12847

    Article  CAS  Google Scholar 

  • Taylor M, Lamb DC, Cannell RJ, Dawson MJ, Kelly SL (2000) Cofactor recycling with immobilized heterologous cytochrome P450 105D1 (CYP105D1). Biochem Biophys Res Commun 279(2):708–711

    Article  CAS  PubMed  Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Top Curr Chem 200:95–126

    CAS  Google Scholar 

  • Tishkov VI, Galkin AG, Fedorchuk VV, Savitsky PA, Rojkova AM, Gieren H, Kula MR (1999) Pilot scale production and isolation of recombinant NAD+- and NADP+-specific formate dehydrogenases. Biotechnol Bioeng 64:187–193

    Article  CAS  PubMed  Google Scholar 

  • Tsotsou GE, Cass AE, Gilardi G (2002) High throughput assay for cytochrome P450 BM3 for screening libraries of substrates and combinatorial mutants. Biosens Bioelectron 17(1–2):119–131

    Google Scholar 

  • Urlacher V, Schmid RD (2002) Biotransformations using prokaryotic P450 monooxygenases. Curr Opin Biotechnol 13(6):557–564

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000a) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5(1):121–131

    CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000b) Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. J Inorg Biochem 81(3):183–190

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468

    Article  CAS  PubMed  Google Scholar 

  • Woyski D, Cupp-Vickery JR (2001) Enhanced expression of cytochrome P450s from lac-based plasmids using lactose as the inducer. Arch Biochem Biophys 388(2):276–280

    Article  CAS  PubMed  Google Scholar 

  • Yano JK, Blasco F, Li H, Schmid RD, Henne A, Poulos TL (2003) Preliminary characterization and crystal structure of a thermostable cytochrome P450 from Thermus thermophilus. J Biol Chem 278(1):608–616

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chouchane S, Magliozzo RS, Rusling JF (2002) Direct voltammetry and catalysis with Mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid films. Anal Chem 74(1):163–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Schmid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urlacher, V.B., Lutz-Wahl, S. & Schmid, R.D. Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64, 317–325 (2004). https://doi.org/10.1007/s00253-003-1514-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1514-1

Keywords

Navigation