Skip to main content
Log in

Carrier-mediated uptake of Levofloxacin by BeWo cells, a human trophoblast cell line

  • Materno-fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective

Placental transfer of Levofloxacin (LF), a broad spectrum fluoroquinolone antibiotic, and its inhibition was investigated in BeWo cells, a human trophoblast cell line.

Methods

The experiments of LF uptake by BeWo cells were performed after preincubation and in the presence of the P-glycoprotein inhibitors (Cyclosporin A, Verapamil and Quercetin), the organic anion/cation transporter inhibitor (Cimetidine) and the MCT substrates (lactic acid and salicylic acid).

Results

P-glycoprotein inhibitors increased the uptake of LF by BeWo cells. The increase in LF accumulation by Cyclosporin A, Verapamil and Quercetin was by 30, 90 and 80%, respectively. Cimetidine, the organic cation inhibitor, increased the transport of LF by 48%. Lactic acid and salicylic acid, the MCT substrates, initially decreased the accumulation of LF by 30% and subsequently increased the uptake of LF by 500 and 53%, respectively.

Conclusions

The uptake of LF by human trophoblast cells is mediated by multiple transporters as well as passive diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fish DN, Chow AT (1997) The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 32:101–119

    Article  CAS  PubMed  Google Scholar 

  2. Mandel GL, Petri WA Jr (2006) The quinolones. In: Brunton LL, Lazo JS, Parker KL (eds) Goodman & Gilman’s the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, New York, pp 1119–1126

    Google Scholar 

  3. Audus KL (1999) Controlling drug delivery across the placenta. Eur J Pharm Sci 8:161–165

    Article  CAS  PubMed  Google Scholar 

  4. Weier N, He SM, Li XT, Wang LL, Zhou SF (2008) Placental drug disposition and its clinical implications. Curr Drug Metab 9:106–121

    Article  CAS  PubMed  Google Scholar 

  5. Holcberg G, Tsadkin M, Sapir O, Huleihel M, Mazor M, Ben Zvi Z (2003) New aspects in placental drug transfer. Isr Med Assoc J 5(12):873–876

    PubMed  Google Scholar 

  6. Chandorkar GA, Ampasavate C, Stobaugh JF, Audus KL (1999) Peptide transport and metabolism across the placenta. Adv Drug Deliv Rev 38:59–67

    Article  CAS  PubMed  Google Scholar 

  7. Myren M, Mose T, Mathiesen L, Knudsen LE (2007) The human placenta—an alternative for studying foetal exposure. Toxicol In Vitro 21:1332–1340

    Article  CAS  PubMed  Google Scholar 

  8. Polachek H, Holcberg G, Sapir G, Tsadkin M, Polachek J, Katz M, Ben Zvi Z (2005) Transfer of Ciprofloxacin, Ofloxacin and Levofloxacin across the perfused human placenta in vitro. Eur J Obstet Gynecol Reprod Biol 122:61–65

    Article  CAS  PubMed  Google Scholar 

  9. Pattilo RA, Gey GO, Delfs E, Mattingly RF (1968) Human hormone production in vitro. Science 159:1467–1469

    Article  Google Scholar 

  10. Ringler GE, Strauss JF (1990) In vitro systems for the study of human placental endocrine function. Endocrinol Rev 11:105–123

    Article  CAS  Google Scholar 

  11. Gips M, Barel S, Bridzy M, Soback S (1995) Detection of fluoroquinolone residues in milk. In: Proceedings of the third IDF international Mastitis seminar

  12. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  13. Young AM, Allen CE, Audus KL (2003) Efflux transporters of the human placenta. Adv Drug Deliv Rev 55:125–132

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura Y, Ikeda S, Furukawa T, Sumizawa T, Tani A, Akiyama S, Nagata Y (1997) Function of P-glycoprotein expressed in placenta and mole. Biochem Biophys Res Commun 235:849–853

    Article  CAS  PubMed  Google Scholar 

  15. Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26:268–270

    Article  CAS  PubMed  Google Scholar 

  16. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12:457–463

    Article  CAS  PubMed  Google Scholar 

  17. Utoguchi N, Chandorkar GA, Avery M, Audus KL (2000) Functional expression of P-glycoprotein in primary cultures of human cytotrophoblast and BeWo cells. Reprod Toxicol 14:217–224

    Article  CAS  PubMed  Google Scholar 

  18. De Lange EC, Marchand S, Van Den Berg D, Van Der Sandt IC, De Boer AG, Delon A, Bouquet S, Couet W (2000) In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci 12:85–93

    Article  PubMed  Google Scholar 

  19. Yamaguchi H, Yano I, Hashimoto Y, Inui KI (2000) Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line Caco-2. J Pharmacol Exp Ther 295:360–366

    CAS  PubMed  Google Scholar 

  20. Rabbaa L, Dautrey S, Colas-Linhart N (1996) Intestinal elimination of ofloxacin enantiomers in the rat: evidence of a carrier-mediated process. Antimicrob Agents Chemother 40:2126–2130

    CAS  PubMed  Google Scholar 

  21. Ito T, Yano I, Tanaka K, Inuri KI (1997) Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther 282:955–960

    CAS  PubMed  Google Scholar 

  22. Takaai M, Suzuki H, Ishida K, Tahara K, Hashimoto Y (2007) Pharmacokinetic analysis of transcellular transport of levofloxacin across LLC-PK1 and Caco-2 cell monolayers. Biol Pharm Bull 30(11):2167–2172

    Article  CAS  PubMed  Google Scholar 

  23. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Eur J Physiol 447:653–665

    Article  CAS  Google Scholar 

  24. Cha SH, Sekine T, Fukushima JI, Kanai Y, Kobayashi Y, Goya T, Endou H (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286

    CAS  PubMed  Google Scholar 

  25. Tahara H, Kusuhara H, Endou H, Koepsell H, Imaoka T, Fuse E, Sugiyama Y (2005) A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J Pharmacol Exp Ther 15:337–345

    Article  Google Scholar 

  26. Balkovetz DF, Leibach FH, Mahesh VB, Ganapathy V (1988) A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles. J Biol Chem 263:13823–13830

    CAS  PubMed  Google Scholar 

  27. Carstensen MH, Leichtweiss HP, Schroder H (1983) Lactate carriers in the artificially perfused human term placenta. Placenta 4:165–174

    Article  CAS  PubMed  Google Scholar 

  28. Utoguchi N, Magnusson M, Audus KL (1999) Carrier-mediated transport of monocarboxylic acid in BeWo cell monolayers as a model of the human trophoblast. J Pharma Sci 88:1288–1292

    Article  CAS  Google Scholar 

  29. Ushigome F, Takanaga H, Matsuo H, Tsukimori K, Nakano H, Ohtani H, Sawada Y (2001) Uptake mechanism of valproic acid in human placental choriocarcinoma cell line (BeWo). Eur J Pharmacol 417:169–176

    Article  CAS  PubMed  Google Scholar 

  30. Alonso-Torre SR, Serrano MA, Alvarado F, Medina JM (1991) Carrier-mediated l-lactate transport in brush border membrane vesicles from rat placenta during late gestation. Biochem J 278:535–541

    Google Scholar 

Download references

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hana Polachek, Gershon Holcberg or Zvi Ben-Zvi.

Additional information

G. Holcberg and Z. Ben-Zvi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polachek, H., Holcberg, G., Polachek, J. et al. Carrier-mediated uptake of Levofloxacin by BeWo cells, a human trophoblast cell line. Arch Gynecol Obstet 281, 833–838 (2010). https://doi.org/10.1007/s00404-009-1177-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-009-1177-y

Keywords

Navigation