Skip to main content
Log in

Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Signaling through the Wnt/β-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. Transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) have proven their usefulness in elucidating these processes. We now found that a small number of hepatocytes escape the Cre-mediated gene knockout in that mouse model. The remaining β-catenin-positive hepatocytes showed approximately 25% higher cell volumes compared to the β-catenin-negative cells and exhibited a marker protein expression profile similar to that of normal perivenous hepatocytes or hepatoma cells with mutationally activated β-catenin. Surprisingly, the expression pattern was observed independent of the cell’s position within the liver lobule, suggesting a malfunction of physiological periportal repression of perivenously expressed genes in β-catenin-deficient liver. Clusters of β-catenin-expressing hepatocytes lacked expression of the gap junction proteins Connexin 26 and 32. Nonetheless, β-catenin-positive hepatocytes had no striking proliferative advantage, but started to grow out on treatment with phenobarbital, a tumor-promoting agent known to facilitate the formation of mouse liver adenoma with activating mutations of Ctnnb1. Progressive re-population of Ctnnb1 knockout livers with wild-type hepatocytes was seen in aged mice with a pre-cirrhotic phenotype. In these large clusters of β-catenin-expressing hepatocytes, perivenous-specific gene expression was re-established. In summary, our data demonstrate that the zone-specificity of a hepatocyte’s gene expression profile is dependent on the presence of β-catenin, and that β-catenin provides a proliferative advantage to hepatocytes when promoted with phenobarbital, or in a pre-cirrhotic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aydinlik H, Nguyen TD, Moennikes O et al (2001) Selective pressure during tumor promotion by phenobarbital leads to clonal outgrowth of beta-catenin-mutated mouse liver tumors. Oncogene 20:7812–7816

    Article  CAS  PubMed  Google Scholar 

  • Benhamouche S, Decaens T, Godard C et al (2006) Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell 10:759–770

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A (2008) Beta-catenin and Ha-ras–master regulators of zonal gene expression in mouse liver? Logos Verlag, Berlin

  • Braeuning A, Schwarz M (2010) Beta-catenin as a multilayer modulator of zonal cytochrome P450 expression in mouse liver. Biol Chem 391:139–148

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Ittrich C, Kohle C et al (2007) Zonal gene expression in mouse liver resembles expression patterns of Ha-ras and beta-catenin mutated hepatomas. Drug Metab Dispos 35:503–507

    Article  CAS  PubMed  Google Scholar 

  • Braeuning A, Sanna R, Huelsken J et al (2009) Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of Ctnnb1. Drug Metab Dispos 37:1138–1145

    Article  CAS  PubMed  Google Scholar 

  • Bruix J, Boix L, Sala M et al (2004) Focus on hepatocellular carcinoma. Cancer Cell 5:215–219

    Article  CAS  PubMed  Google Scholar 

  • Brulport M, Schormann W, Bauer A et al (2007) Fate of extrahepatic human stem and precursor cells after transplantation into mouse livers. Hepatology 46:861–870

    Article  PubMed  Google Scholar 

  • Cadoret A, Ovejero C, Terris B et al (2002) New targets of beta-catenin signaling in the liver are involved in the glutamine metabolism. Oncogene 21:8293–8301

    Article  CAS  PubMed  Google Scholar 

  • Cavard C, Colnot S, Audard V et al (2008) Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol 4:647–660

    Article  CAS  PubMed  Google Scholar 

  • Colnot S, Decaens T, Niwa-Kawakita M et al (2004) Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci USA 101:17216–17221

    Article  CAS  PubMed  Google Scholar 

  • Dagli ML, Hernandez-Blazquez FJ (2007) Roles of gap junctions and connexins in non-neoplastic pathological processes in which cell proliferation is involved. J Membr Biol 218:79–91

    Article  PubMed  Google Scholar 

  • Farazi PA, DePinho RA (2006) Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer 6:674–687

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R (1992) Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther 53:275–354

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R, Gaunitz F (1997) Cell–cell interactions in the regulation of the expression of hepatic enzymes. Cell Biol Toxicol 13:263–273

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983) Heterogeneous distribution of glutamine synthetase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    CAS  PubMed  Google Scholar 

  • Gebhardt R, Williams GM (1995) Glutamine synthetase and hepatocarcinogenesis. Carcinogenesis 16:1673–1681

    Article  CAS  PubMed  Google Scholar 

  • Giera S, Braeuning A, Kohle C et al (2010) Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci 115:22–33

    Article  CAS  PubMed  Google Scholar 

  • Godoy P, Hengstler JG, Ilkavets I et al (2009) Extracellular matrix modulates sensitivity of hepatocytes to fibroblastoid dedifferentiation and transforming growth factor beta-induced apoptosis. Hepatology 49:2031–2043

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Rajvanshi P, Sokhi RP et al (1999) Position-specific gene expression in the liver lobule is directed by the microenvironment and not by the previous cell differentiation state. J Biol Chem 274:2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Hailfinger S, Jaworski M, Braeuning A et al (2006) Zonal gene expression in murine liver: lessons from tumors. Hepatology 43:407–414

    Article  CAS  PubMed  Google Scholar 

  • Harada N, Miyoshi H, Murai N et al (2002) Lack of tumorigenesis in the mouse liver after adenovirus-mediated expression of a dominant stable mutant of beta-catenin. Cancer Res 62:1971–1977

    CAS  PubMed  Google Scholar 

  • Harada N, Oshima H, Katoh M et al (2004) Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res 64:48–54

    Article  CAS  PubMed  Google Scholar 

  • Hoehme S, Brulport M, Bauer A et al (2010) Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci USA 107:10371–10376

    Article  CAS  PubMed  Google Scholar 

  • Huelsken J, Vogel R, Erdmann B et al (2001) Beta-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K (1995) Zonation of metabolism and gene expression in liver. Histochem Cell Biol 103:81–91

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69:708–764

    CAS  PubMed  Google Scholar 

  • Jungermann K, Kietzmann T (1996) Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr 16:179–203

    Article  CAS  PubMed  Google Scholar 

  • Koenig S, Aurich H, Schneider C et al (2007) Zonal expression of hepatocytic marker enzymes during liver repopulation. Histochem Cell Biol 128:105–114

    Article  CAS  PubMed  Google Scholar 

  • Kruithof-de Julio M, Labruyere WT, Ruijter JM et al (2005) The RL-ET-14 cell line mediates expression of glutamine synthetase through the upstream enhancer/promoter region. J Hepatol 43:126–131

    Article  CAS  PubMed  Google Scholar 

  • Kuo FC, Darnell JE (1991) Evidence that interaction of hepatocytes with the collecting (hepatic) veins triggers position-specific transcription of the glutamine synthetase and ornithine aminotransferase genes in the mouse liver. Mol Cell Biol 11:6050–6058

    CAS  PubMed  Google Scholar 

  • Lindros KO (1997) Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen Pharmacol 28:191–196

    CAS  PubMed  Google Scholar 

  • Loeppen S, Schneider D, Gaunitz D et al (2002) Overexpression of glutamine synthetase is associated with beta-catenin-mutations in mouse liver tumors during promotion of hepatocarcinogenesis by phenobarbital. Cancer Res 62:5685–5688

    CAS  PubMed  Google Scholar 

  • Loeppen S, Koehle C, Buchmann A et al (2005) A beta-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis 26:239–248

    Article  CAS  PubMed  Google Scholar 

  • Marx-Stoelting P, Mahr J, Knorpp T et al (2008) Tumor promotion in liver of mice with a conditional Cx26 knockout. Toxicol Sci 103:260–267

    Article  CAS  PubMed  Google Scholar 

  • Moennikes O, Buchmann A, Romualdi A et al (2000) Lack of phenobarbital-mediated promotion of hepatocarcinogenesis in connexin32-null mice. Cancer Res 60:5087–5091

    CAS  PubMed  Google Scholar 

  • Nakashima Y, Ono T, Yamanoi A et al (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39:763–768

    Article  CAS  PubMed  Google Scholar 

  • Oinonen T, Lindros KO (1998) Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J 329:17–35

    CAS  PubMed  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  Google Scholar 

  • Quistorff B, Dich J, Grunnet N (1986) Periportal and perivenous hepatocytes retain their zonal characteristics in primary culture. Biochem Biophys Res Commun 139:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Schols L, Mecke D, Gebhardt R (1990) Reestablishment of the heterogeneous distribution of hepatic glutamine synthetase during regeneration after CCl4-intoxication. Histochemistry 94:49–54

    Article  CAS  PubMed  Google Scholar 

  • Schrode W, Mecke D, Gebhardt R (1990) Induction of glutamine synthetase in periportal hepatocytes by cocultivation with a liver epithelial cell line. Eur J Cell Biol 53:35–41

    CAS  PubMed  Google Scholar 

  • Sekine S, Lan BY, Bedolli M et al (2006) Liver-specific loss of β-catenin blocks glutamine synthesis pathway activity and cytochrome P450 expression in mice. Hepatology 43:817–825

    Article  CAS  PubMed  Google Scholar 

  • Sekine S, Gutierrez PJ, Lan BY et al (2007) Liver-specific loss of beta-catenin results in delayed hepatocyte proliferation after partial hepatectomy. Hepatology 45:361–368

    Article  CAS  PubMed  Google Scholar 

  • Sekine S, Ogawa R, Ito R et al (2009) Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136:2304–2315

    Article  CAS  PubMed  Google Scholar 

  • Strathmann J, Schwarz M, Tharappel JC et al (2006) PCB 153, a non-dioxin-like tumor promoter, selects for beta-catenin (Catnb) mutated mouse liver tumors. Toxicol Sci 93:34–40

    Article  CAS  PubMed  Google Scholar 

  • Tan X, Behari J, Cieply B et al (2006) Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 131:1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Thompson MD, Monga SP (2007) WNT/beta-catenin signaling in liver health and disease. Hepatology 45:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102

    Article  CAS  PubMed  Google Scholar 

  • Zhang XF, Tan X, Zeng G, et al (2010) Conditional beta-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor alpha/phosphoinositide 3-kinase signaling. Hepatology 52:954–965

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the expert technical assistance by Johanna Mahr and Elke Zabinsky. We also thank Dr. J. Huelsken (Lausanne, Switzerland) for the kind gift of Ctnnb1 loxP/loxP mice, Dr. R. Wolf (Dundee, UK) for the gift of CYP and GST antisera, and Dr. S. Yamagoe (Tokyo, Japan) for providing the Lect2 antibody. We also thank Dr. Leticia Quintanilla-Fendt for her consultation on histopathological findings. This study was supported by the Deutsche Forschungsgemeinschaft (grant SFB 773), by the European Commission through CancerSys (HEALTH-F4-2008-223188), and by the Bundesministerium für Bildung und Forschung-funded network ‘Virtual Liver’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schwarz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braeuning, A., Singh, Y., Rignall, B. et al. Phenotype and growth behavior of residual β-catenin-positive hepatocytes in livers of β-catenin-deficient mice. Histochem Cell Biol 134, 469–481 (2010). https://doi.org/10.1007/s00418-010-0747-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0747-1

Keywords

Navigation