Skip to main content
Log in

The sodium bile salt cotransport family SLC10

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The SLC10 family of sodium/bile salt cotransporters contains over 50 members in animal, plant and bacterial species. In man, two well-characterized members and three orphan transporters are known. The Na+/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile salt transporter (ASBT; SLC10A2) are critical components of the enterohepatic circulation of bile salts. NTCP and ASBT are cotransporters that mediate sodium-dependent, electrogenic uptake of mainly bile salts into hepatocytes (NTCP), biliary epithelial cells, ileal enterocytes and renal proximal tubular cells (ASBT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2A, B.

Similar content being viewed by others

References

  • 1 Hagenbuch B, Stieger B, Foguet M, Lübbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 88:10629–10633

    CAS  PubMed  Google Scholar 

  • 2 Hagenbuch B, Meier PJ (1994) Molecular cloning, chromosomal localization, and functional characterization of a human liver Na+ bile acid cotransporter. J Clin Invest 93:1326–1331

    CAS  PubMed  Google Scholar 

  • 3 Cattori V, Eckhardt U, Hagenbuch B (1999) Molecular cloning and functional characterization of two alternatively spliced Ntcp isoforms from mouse liver. Biochim Biophys Acta 1445:154–159

    Article  CAS  PubMed  Google Scholar 

  • 4 Wong MH, Oelkers P, Craddock AL, Dawson PA (1994) Expression Cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 269:1340–1347

    CAS  PubMed  Google Scholar 

  • 5 Shneider BL, Dawson PA, Christie DM, Hardikar W, Wong MH, Suchy FJ (1995) Cloning and molecular characterization of the ontogeny of a rat ileal sodium-dependent bile acid transporter. J Clin Invest 95:745–754

    CAS  PubMed  Google Scholar 

  • 6 Oelkers P, Dawson PA (1995) Cloning and chromosomal localization of the human ileal lipid-binding protein. Biochim Biophys Acta 1257:199–202

    Article  CAS  PubMed  Google Scholar 

  • 7 Kramer W, Stengelin S, Baringhaus KH, Enhsen A, Heuer H, Becker W, Corsiero D, Girbig F, Noll R, Weyland C (1999) Substrate specificity of the ileal and the hepatic Na+/bile acid cotransporters of the rabbit. I. Transport studies with membrane vesicles and cell lines expressing the cloned transporters. J Lipid Res 40:1604–1617

    CAS  PubMed  Google Scholar 

  • 8 Saeki T, Matoba K, Furukawa H, Kirifuji K, Kanamoto R, Iwami K (1999) Characterization, cDNA cloning, and functional expression of mouse ileal sodium-dependent bile acid transporter. J Biochem Tokyo 125:846–851

    CAS  PubMed  Google Scholar 

  • 9 Boyer JL, Ng OC, Ananthanarayanan M, Hofmann AF, Schteingart CD, Hagenbuch B, Stieger B, Meier PJ (1994) Expression and characterization of a functional rat liver Na+ bile acid cotransport system in COS-7 cells. Am J Physiol 266:G382–G387

    CAS  PubMed  Google Scholar 

  • 10 Schroeder A, Eckhardt U, Stieger B, Tynes R, Schteingart CD, Hofmann AF, Meier PJ, Hagenbuch B (1998) Substrate specificity of the rat liver Na+/bile salt cotransporter in Xenopus laevis oocytes and in CHO cells. Am J Physiol 274:G370–G375

    CAS  PubMed  Google Scholar 

  • 11 Platte HD, Honscha W, Schuh K, Petzinger E (1996) Functional characterization of the hepatic sodium-dependent taurocholate transporter stably transfected into an immortalized liver-derived cell line and V79 fibroblasts. Eur J Cell Biol 70:54–60

    CAS  PubMed  Google Scholar 

  • 12 Walters HC, Craddock AL, Fusegawa H, Willingham MC, Dawson PA (2000) Expression, transport properties, and chromosomal location of organic anion transporter subtype 3. Am J Physiol 279:G1188–G1200

    CAS  Google Scholar 

  • 13 Sun AQ, Ananthanarayanan M, Soroka CJ, Thevananther S, Shneider BL, Suchy FJ (1998) Sorting of rat liver and ileal sodium-dependent bile acid transporters in polarized epithelial cells. Am J Physiol 275:G1045–G1055

    CAS  PubMed  Google Scholar 

  • 14 Hallen S, Fryklund J, Sachs G (2000) Inhibition of the human sodium/bile acid cotransporters by side-specific methanethiosulfonate sulfhydryl reagents: substrate-controlled accessibility of site of inactivation. Biochemistry 39:6743–6750

    CAS  PubMed  Google Scholar 

  • 15 Torchia EC, Shapiro RJ, Agellon LB (1996) Reconstitution of bile acid transport in the rat hepatoma McArdle RH-7777 cell line. Hepatology 24:206–211

    PubMed  Google Scholar 

  • 16 Hagenbuch B, Meier PJ (1996) Sinusoidal (basolateral) bile salt uptake systems of hepatocytes. Semin Liver Dis 16:129–136

    PubMed  Google Scholar 

  • 17 Weinman SA, Carruth MW, Dawson PA (1998) Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 273:34691–34695

    Article  CAS  PubMed  Google Scholar 

  • 18 Hallen S, Bjorquist A, Ostlund-Lindqvist AM, Sachs G (2002) Identification of a region of the ileal-type sodium/bile acid cotransporter interacting with a competitive bile acid transport inhibitor. Biochemistry 41:14916–14924

    Article  CAS  PubMed  Google Scholar 

  • 19 Zahner D, Eckhardt U, Petzinger E (2003) Transport of taurocholate by mutants of negatively charged amino acids, cysteines, and threonines of the rat liver sodium-dependent taurocholate cotransporting polypeptide Ntcp. Eur J Biochem 270:1117–1127

    CAS  PubMed  Google Scholar 

  • 20 Wong MH, Oelkers P, Dawson PA (1995) Identification of a mutation in the ileal sodium-dependent bile acid transporter gene that abolishes transport activity. J Biol Chem 270:27228–27234

    CAS  PubMed  Google Scholar 

  • 21 Hallen S, Mareninova O, Branden M, Sachs G (2002) Organization of the membrane domain of the human liver sodium/bile acid cotransporter. Biochemistry 41:7253–7266

    Article  CAS  PubMed  Google Scholar 

  • 22 Hallen S, Branden M, Dawson PA, Sachs G (1999) Membrane insertion scanning of the human ileal sodium/bile acid co-transporter. Biochemistry 38:11379–11388

    Article  CAS  PubMed  Google Scholar 

  • 23 Kim JY, Kim KH, Lee JA, Namkung W, Sun AQ, Ananthanarayanan M, Suchy FJ, Shin DM, Muallem S, Lee MG (2002) Transporter-mediated bile acid uptake causes Ca2+-dependent cell death in rat pancreatic acinar cells. Gastroenterology 122:1941–1953

    CAS  PubMed  Google Scholar 

  • 24 Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ (2000) Hepatic transport of bile salts. Semin Liver Dis 20:273–292

    Article  CAS  PubMed  Google Scholar 

  • 25 St-Pierre MV, Kullak-Ublick GA, Hagenbuch B, Meier PJ (2001) Transport of bile acids in hepatic and non-hepatic tissues. J Exp Biol 204:1673–1686

    CAS  PubMed  Google Scholar 

  • 26 Trauner M, Meier PJ, Boyer JL (1998) Molecular pathogenesis of cholestasis. N Engl J Med 339:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • 27 Lee J, Boyer JL (2000) Molecular alterations in hepatocyte transport mechanisms in acquired cholestatic liver disorders. Semin Liver Dis 20:373–384

    Article  CAS  PubMed  Google Scholar 

  • 28 Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner M (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33:633–646

    Article  CAS  PubMed  Google Scholar 

  • 29 Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF (1997) Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 100:2714–2721

    CAS  PubMed  Google Scholar 

  • 30 Craddock AL, Love MW, Daniel RW, Kirby LC, Walters HC, Wong MH, Dawson PA (1998) Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter. Am J Physiol 274:G157–G169

    PubMed  Google Scholar 

  • 31 Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF (1997) Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 100:2714–2721

    CAS  PubMed  Google Scholar 

  • 32 Lazaridis KN, Tietz P, Wu T, Kip S, Dawson PA, LaRusso NF (2000) Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci USA 97:11092–11097

    Article  CAS  Google Scholar 

  • 33 Shneider BL (2001) Intestinal bile acid transport: biology, physiology, and pathophysiology. J Pediatr Gastroenterol Nutr 32:407–417

    Article  CAS  PubMed  Google Scholar 

  • 34 Oelkers P, Kirby LC, Heubi JE, Dawson PA (1997) Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2). J Clin Invest 99:1880–1887

    CAS  PubMed  Google Scholar 

  • 35 Alcalay M, Toniolo D (1988) CpG islands of the X chromosome are gene associated. Nucleic Acids Res 16:9527–9543

    CAS  PubMed  Google Scholar 

  • 36 Wess G, Kramer W, Enhsen A, Glombik H, Baringhaus KH, Boger G, Urmann M, Bock K, Kleine H, Neckermann G, Hoffmann A, Pittius C, Falk E, Fehlhaber HW, Kogler H, Friedrich M (1994) Specific inhibitors of ileal bile acid transport. J Med Chem 37:873–875

    CAS  PubMed  Google Scholar 

  • 37 Root C, Smith CD, Sundseth SS, Pink HM, Wilson JG, Lewis MC (2002) Ileal bile acid transporter inhibition, CYP7A1 induction, and antilipemic action of 264W94. J Lipid Res 43:1320–1330

    CAS  PubMed  Google Scholar 

  • 38 Tollefson MB, Vernier WF, Huang HC, Chen FP, Reinhard EJ, Beaudry J, Keller BT, Reitz DB (2000) A novel class of apical sodium co-dependent bile acid transporter inhibitors: the 2,3-disubstituted-4-phenylquinolines. Bioorg Med Chem Lett 10:277–279

    Article  CAS  PubMed  Google Scholar 

  • 39 Stein EA, Rhyne JM, McKenney J, Bays H, Roth E, Breed S, Rolleri R (2001) Intestinal bile acid transport (IBAT) inhibition: results of a 4 week pilot study of 264w94, a novel IBAT inhibitor in hypercholesterolemia (abstract). XIV International Symposium on Drugs Affecting Lipid Metabolism. New York, Sept. 9–12, 2001

  • 40 Petzinger E, Wickboldt A, Pagels P, Starke D, Kramer W (1999) Hepatobiliary transport of bile acid amino acid, bile acid peptide, and bile acid oligonucleotide conjugates in rats. Hepatology 30:1257–1268

    CAS  PubMed  Google Scholar 

  • 41 Kullak-Ublick GA, Glasa J, Boker C, Oswald M, Grutzner U, Hagenbuch B, Stieger B, Meier PJ, Beuers U, Kramer W, Wess G, Paumgartner G (1997) Chlorambucil-taurocholate is transported by bile acid carriers expressed in human hepatocellular carcinomas. Gastroenterology 113:1295–1305

    Google Scholar 

  • 42 Kramer W, Wess G, Neckermann G, Schubert G, Fink J, Girbig F, Gutjahr U, Kowalewski S, Baringhaus KH, Boger G, Enhsen A, Falk E, Friedrich M, Glombik H, Hoffmann A, Pittius C, Urmann M (1994) Intestinal absorption of peptides by coupling to bile acids. J Biol Chem 269:10621–10627

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Swiss National Science Foundation (grant 31-59204.99 to B.H.) and by the NIH (DK 47987 and HL49373 to P.A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Hagenbuch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagenbuch, B., Dawson, P. The sodium bile salt cotransport family SLC10. Pflugers Arch - Eur J Physiol 447, 566–570 (2004). https://doi.org/10.1007/s00424-003-1130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1130-z

Keywords

Navigation