Skip to main content
Log in

Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2

  • Epithelial Transport
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Small peptides and some pharmacologically active compounds are absorbed from the small intestine by the apical H+-coupled peptide transporter 1 (PEPT1) and the basolateral peptide transporter. Here we investigated the efflux properties of the basolateral peptide transporter in Caco-2 cells using two strategies, efflux measurements and a kinetic analysis of transepithelial transport of glycylsarcosine (Gly-Sar). [14C]Gly-Sar efflux through the basolateral membrane was not affected significantly by the external pH. Both approaches revealed that the basolateral peptide transporter was saturable in the efflux direction, and that the affinity was lower than that in the influx direction. For two peptide-like drugs, there was no difference in substrate recognition by the basolateral peptide transporter between the two sides of the membrane. Using the kinetic parameters of PEPT1 and the basolateral peptide transporter, a computational model of Gly-Sar transport in Caco-2 cells was constructed. The simulation fitted the experimental data well. Our findings suggested that substrate affinity of the basolateral peptide transporter is apparently asymmetric, but pH-dependence and substrate specificity are symmetric for the two directions of transport. The behaviour of Gly-Sar in Caco-2 cells could be predicted by a mathematical model describing the peptide transporters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1 A
Fig. 2A–C
Fig. 3 A
Fig. 4A–E
Fig. 5A–D
Fig. 6A,B
Fig. 7A–D

Similar content being viewed by others

References

  1. Adibi SA (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113:332–340

    CAS  PubMed  Google Scholar 

  2. Dyer J, Beechey RB, Gorvel J-P, Smith RT, Wootton R, Shirazi-Beechey SP (1990) Glycyl-l-proline transport in rabbit enterocyte basolateral-membrane vesicles. Biochem J 269:565–571

    CAS  PubMed  Google Scholar 

  3. Garrigues TM, Martin U, Peris-Ribera JE, Prescott LF (1991) Dose-dependent absorption and elimination of cefadroxil in man. Eur J Clin Pharmacol 41:179–183

    CAS  PubMed  Google Scholar 

  4. Görlich D, J.Seewald M, Ribbeck K (2003) Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J 22:1088–1100

    Article  PubMed  Google Scholar 

  5. Habu Y, Yano I, Okuda M, Hashimoto Y, Inui K (2000) Kinetic analysis of p-aminohippurate transport in the OK kidney epithelial cell line. Pharm Res 17:1155–1157

    Google Scholar 

  6. Inui K, Terada T (1999) Dipeptide transporters. In: Amidon GL, Sadée W (eds) Membrane transporters as drug targets. Kluwer, Dordrecht, pp 269–288

  7. Inui K, Yamamoto M, Saito H (1992) Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line Caco-2: specific transport systems in apical and basolateral membranes. J Pharmacol Exp Ther 261:195–201

    CAS  PubMed  Google Scholar 

  8. Irie M, Terada T, Sawada K, Saito H, Inui K (2001) Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in Caco-2 cells. J Pharmacol Exp Ther 298:711–717

    CAS  PubMed  Google Scholar 

  9. Kottra G, Daniel H (2001) Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. J Physiol (Lond) 536:495–503

    Google Scholar 

  10. Larsen EH, Sørensen JB, Sørensen JN (2002) Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine. J Physiol (Lond) 542:33–50

    Google Scholar 

  11. Leibach FH, Ganapathy V (1996) Peptide transporters in the intestine and the kidney. Annu Rev Nutr 16:99–119

    Article  CAS  PubMed  Google Scholar 

  12. Lin C, Affrime M, Radwanski E, Lim J, Colucci R, Cayen MN (1996) Comparative bioavailability of ceftibuten in capsule and suspension forms. Clin Ther 18:1139–1149

    Article  CAS  PubMed  Google Scholar 

  13. Maenz DD, Cheeseman CI (1987) The Na+-independent d-glucose transporter in the enterocyte basolateral membrane: orientation and cytochalasin B binding characteristics. J Membr Biol 97:259–266

    CAS  PubMed  Google Scholar 

  14. Matsumoto S, Saito H, Inui K (1994) Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes. J Pharmacol Exp Ther 270:498–504

    CAS  PubMed  Google Scholar 

  15. Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A (2003) Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol 53:105–123

    CAS  PubMed  Google Scholar 

  16. Meier C, Ristic Z, Klauser S, Verrey F (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21:580–589

    Article  CAS  PubMed  Google Scholar 

  17. Quick M, Tomasevic J, Wright EM (2003) Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Biochemistry 42:9147–9152

    Article  CAS  PubMed  Google Scholar 

  18. Saito H, Inui K (1993) Dipeptide transporters in apical and basolateral membranes of the human intestinal cell line Caco-2. Am J Physiol 265:G289–G294

    CAS  PubMed  Google Scholar 

  19. Sauer GA, Nagel G, Koepsell H, Bamberg E, Hartung K (2000) Voltage and substrate dependence of the inverse transport mode of the rabbit Na+/glucose cotransporter (SGLT1). FEBS Lett 469:98–100

    Article  CAS  PubMed  Google Scholar 

  20. Sawada K, Terada T, Saito H, Inui K (2001) Distinct transport characteristics of basolateral transporters between MDCK and Caco-2 cells. Pflugers Arch 443:31–37

    Article  CAS  PubMed  Google Scholar 

  21. Strieter J, Stephenson JL, Palmer LG, Weinstein AM (1990) Volume-activated chloride permeability can mediate cell volume regulation in a mathematical model of a tight epithelium. J Gen Physiol 96:319–344

    Article  CAS  PubMed  Google Scholar 

  22. Terada T, Inui K (2004) Peptide transporters: structure, function, regulation and application for drug delivery. Curr Drug Metab 5:85–94

    CAS  PubMed  Google Scholar 

  23. Terada T, Sawada K, Saito H, Inui K (1999) Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am J Physiol276:G1435–G1441

    Google Scholar 

  24. Thwaites DT, Brown CDA, Hirst BH, Simmons NL (1993) Transepithelial glycylsarcosine transport in intestinal Caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes. J Biol Chem 268:7640–7642

    CAS  PubMed  Google Scholar 

  25. Thwaites DT, Brown CDA, Hirst BH, Simmons NL (1993) H+-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics. Biochim Biophys Acta 1151:237–245

    Article  CAS  PubMed  Google Scholar 

  26. Tomita Y, Otsuki Y, Hashimoto Y, Inui K (1997) Kinetic analysis of tetraethylammonium transport in the kidney epithelial cell line, LLC-PK1. Pharm Res 14:1236–1240

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi H, Yano I, Hashimoto Y, Inui K (2000) Secretory mechanisms of grepafloxacin and levofloxacin in the human intestinal cell line Caco-2. J Pharmacol Exp Ther 295:360–366

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. S. Matsuoka and A. Noma, Department of Physiology and Biophysics, Kyoto University Graduate School of Medicine, for helpful discussion about the construction of simulation program. This work was supported in part by the Leading Project for Biosimulation, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Megumi Irie is a Research Fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Inui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irie, M., Terada, T., Okuda, M. et al. Efflux properties of basolateral peptide transporter in human intestinal cell line Caco-2. Pflugers Arch - Eur J Physiol 449, 186–194 (2004). https://doi.org/10.1007/s00424-004-1326-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-004-1326-x

Keywords

Navigation