Skip to main content

Advertisement

Log in

A Predictive Model of Therapeutic Monoclonal Antibody Dynamics and Regulation by the Neonatal Fc Receptor (FcRn)

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 05 August 2011

Abstract

We constructed a novel physiologically-based pharmacokinetic (PBPK) model for predicting interactions between the neonatal Fc receptor (FcRn) and anti-carcinoembryonic antigen (CEA) monoclonal antibodies (mAbs) with varying affinity for FcRn. Our new model, an integration and extension of several previously published models, includes aspects of mAb-FcRn dynamics within intracellular compartments not represented in previous PBPK models. We added mechanistic structure that details internalization of class G immunoglobulins by endothelial cells, subsequent FcRn binding, recycling into plasma of FcRn-bound IgG and degradation of free endosomal IgG. Degradation in liver is explicitly represented along with the FcRn submodel in skin and muscle. A variable tumor mass submodel is also included, used to estimate the growth of an avascular, necrotic tumor core, providing a more realistic picture of mAb uptake by tumor. We fitted the new multiscale model to published anti-CEA mAb biodistribution data, i.e. concentration-time profiles in tumor and various healthy tissues in mice, providing new estimates of mAb-FcRn related kinetic parameters. The model was further validated by successful prediction of F(ab′)2 mAb fragment biodistribution, providing additional evidence of its potential value in optimizing intact mAb and mAb fragment dosing for clinical imaging and immunotherapy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control AC-19:716–723, 1974.

    Google Scholar 

  2. Barrett, P. H., B. M. Bell, C. Cobelli, H. Golde, A. Schumitzky, P. Vicini, and D. M. Foster. SAAM II: Simulation, analysis, and modeling software for tracer and pharmacokinetic studies. Metabolism 47:484–492, 1998.

    Google Scholar 

  3. Baxter, L. T., H. Zhu, D. G. Mackensen, W. F. Butler, and R. K. Jain. Biodistribution of monoclonal antibodies: Scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 55:4611–4622, 1995.

    Google Scholar 

  4. Baxter, L. T., H. Zhu, D. G. Mackensen, and R. K. Jain. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 54:1517–1528, 1994.

    Google Scholar 

  5. Bell, B. M., J. V. Burke, and A. Schumitzky. A relative weighting method for estimating parameters and variances in multiple data sets. Comput. Stat. Data. An. 22:119–135, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  6. Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Direct in vivo measurement of targeted binding in a human tumor xenograft. Proc. Natl. Acad. Sci. U.S.A. 94:1785–1790, 1997.

    Article  Google Scholar 

  7. Borvak, J., J. Richardson, C. Medesan, F. Antohe, C. Radu, M. Simionescu, V. Ghetie, and E. S. Ward. Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int. Immunol. 10:1289–1298, 1998.

    Article  Google Scholar 

  8. Brambell, F. W., W. A. Hemmings, and I. G. Morris. A theoretical model of gamma-globulin catabolism. Nature 203:1352–1354, 1964.

    Google Scholar 

  9. Brown, R. P., M. D. Delp, S. L. Lindstedt, L. R. Rhomberg, and R. P. Beliles. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13:407–484, 1997.

    Google Scholar 

  10. Burmeister, W. P., A. H. Huber, and P. J. Bjorkman. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383, 1994.

    Google Scholar 

  11. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1:118–129, 2001.

    Article  MathSciNet  Google Scholar 

  12. Covell, D. G., J. Barbet, O. D. Holton, C. D. Black, R. J. Parker, and J. N. Weinstein. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab′)2, and Fab’ in mice. Cancer Res. 46:3969–3978, 1986.

    Google Scholar 

  13. Dedrick, R. L. Animal scale-up. J. Pharmacokinet. Biopharm. 1:435–461, 1973.

    Article  Google Scholar 

  14. Dias, S., K. Hattori, B. Heissig, Z. Zhu, Y. Wu, L. Witte, D. J. Hicklin, M. Tateno, P. Bohlen, M. A. Moore, and S. Rafii. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc. Natl. Acad. Sci. U.S.A. 98:10857–10862, 2001.

    Article  Google Scholar 

  15. Fahey, J. L., and A. G. Robinson. Factors controlling serum gamma-globulin concentration. J. Exp. Med. 118:845–868, 1963.

    Article  Google Scholar 

  16. Fukumoto, T., M. R. Brandon. Importance of the liver in immunoglobulin catabolism. Res. Vet. Sci. 32:62–69, 1982.

    Google Scholar 

  17. Gerlowski, L. E., and R. K. Jain. Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci. 72:1103–1127, 1983.

    Google Scholar 

  18. Ghetie, V., J. G. Hubbard, J. K. Kim, M. F. Tsen, Y. Lee, and E. S. Ward. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur. J. Immunol. 26:690–696, 1996.

    Google Scholar 

  19. Ghetie, V., and E. S. Ward. Transcytosis and catabolism of antibody. Immunol. Res. 25:97–113, 2002.

    Google Scholar 

  20. Green, A. J., C. J. Johnson, K. L. Adamson, and R. H. Begent. Mathematical model of antibody targeting: important parameters defined using clinical data. Phys. Med. Biol. 46:1679–1693, 2001.

    Article  Google Scholar 

  21. Hansen, R. J., and J. P. Balthasar. Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J. Pharm. Sci. 92:1206–1215, 2003.

    Article  Google Scholar 

  22. Hefta, L. J., M. Neumaier, and J. E. Shively. Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs. Immunotechnology 4:49–57, 1998.

    Article  Google Scholar 

  23. Israel, E. J., V. K. Patel, S. F. Taylor, A. Marshak-Rothstein, and N. E. Simister. Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154:6246–6251, 1995.

    Google Scholar 

  24. Israel, E. J., D. F. Wilsker, K. C. Hayes, D. Schoenfeld, and N. E. Simister. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89:573–578, 1996.

    Article  Google Scholar 

  25. Jain, R. K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl. Cancer Inst. 81:570–576, 1989.

    Google Scholar 

  26. Jones, E. A., and T. A. Waldmann. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J. Clin. Invest. 51:2916–2927, 1972.

    Google Scholar 

  27. Junghans, R. P., and C. L. Anderson. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. U.S.A. 93:5512–5516, 1996.

    Article  Google Scholar 

  28. Keener, J. P., and J. Sneyd. Mathematical Physiology, 8th ed. New York: Springer, 1998, p. 766.

  29. Kim, J. K., M. Firan, C. G. Radu, C. H. Kim, V. Ghetie, and E. S. Ward. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur. J. Immunol. 29:2819–2825, 1999.

    Google Scholar 

  30. Ludwig, D. L., D. S. Pereira, Z. Zhu, D. J. Hicklin, and P. Bohlen. Monoclonal antibody therapeutics and apoptosis. Oncogene 22:9097–9106, 2003.

    Google Scholar 

  31. Maloney, D. G., A. J. Grillo-Lopez, D. J. Bodkin, C. A. White, T. M. Liles, I. Royston, C. Varns, J. Rosenberg, and R. Levy. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. J. Clin. Oncol. 15:3266–3274, 1997.

    Google Scholar 

  32. Mink, J. G., J. Radl, P. van den Berg, J. J. Haaijman, M. J. van Zwieten, and R. Benner. Serum immunoglobulins in nude mice and their heterozygous littermates during ageing. Immunology 40:539–545, 1980.

    Google Scholar 

  33. Nestorov, I. Whole body pharmacokinetic models. Clin. Pharmacokinet. 42:883–908, 2003.

    Google Scholar 

  34. Ober, R. J., C. Martinez, C. Vaccaro, J. Zhou, and E. S. Ward. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J. Immunol. 172:2021–2029, 2004.

    Google Scholar 

  35. Rastetter, W., A. Molina, and C. A. White. Rituximab: expanding role in therapy for lymphomas and autoimmune diseases. Annu. Rev. Med. 55:477–503, 2004.

    Article  Google Scholar 

  36. Riggs, D. S. The Mathematical Approach to Physiological Problems; A Critical Primer, 14th ed. Baltimore: Williams & Wilkins Co., 1963, p. 445.

  37. Riley, J. K., and M. X. Sliwkowski. CD20: A gene in search of a function. Semin. Oncol. 27:17–24, 2000.

    Google Scholar 

  38. Rippe, B., and B. Haraldsson. Transport of macromolecules across microvascular walls: The two-pore theory. Physiol. Rev. 74:163–219, 1994.

    Google Scholar 

  39. Rodewald, R., and J. P. Kraehenbuhl. Receptor-mediated transport of IgG. J. Cell. Biol. 99:159s–164s, 1984.

    Article  Google Scholar 

  40. Roopenian, D. C., G. J. Christianson, T. J. Sproule, A. C. Brown, S. Akilesh, N. Jung, S. Petkova, L. Avanessian, E. Y. Choi, D. J. Shaffer, P. A. Eden, and C. L. Anderson. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J. Immunol. 170:3528–3533, 2003.

    Google Scholar 

  41. Rubin, I., and Y. Yarden. The basic biology of HER2. Ann. Oncol. 12 Suppl 1:S3–S8, 2001.

    Google Scholar 

  42. Rygaard, K., and M. Spang-Thomsen. Quantitation and gompertzian analysis of tumor growth. Breast Cancer Res. Treat. 46:303–312, 1997.

    Article  Google Scholar 

  43. Seber, G. A. F., and C. J. Wild. Nonlinear regression, 20th ed., Hoboken, NJ: Wiley-Interscience, 2003, p. 768.

  44. Sharkey, R. M., A. Natale, D. M. Goldenberg, M. J. Mattes. Rapid blood clearance of immunoglobulin G2a and immunoglobulin G2b in nude mice. Cancer Res. 51:3102–3107, 1991.

    Google Scholar 

  45. Simister, N. E. Placental transport of immunoglobulin G. Vaccine 21:3365–3369, 2003.

    Article  Google Scholar 

  46. Theil, F. P., T. W. Guentert, S. Haddad, and P. Poulin. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol. Lett. 138:29–49, 2003.

    Article  Google Scholar 

  47. Vaughn, D. E., and P. J. Bjorkman. High-affinity binding of the neonatal Fc receptor to its IgG ligand requires receptor immobilization. Biochemistry 36:9374–9380, 1997.

    Article  Google Scholar 

  48. Waldmann, T. A., and W. Strober. Metabolism of immunoglobulins. Prog. Allergy 13:1–110, 1969.

    Google Scholar 

  49. Williams, L. E., R. B. Duda, R. T. Proffitt, B. G. Beatty, J. D. Beatty, J. Y. Wong, J. E. Shively, and R. J. Paxton. Tumor uptake as a function of tumor mass: A mathematic model. J. Nucl. Med. 29:103–109, 1988.

    Google Scholar 

  50. Williams, L. E., A. M. Wu, P. J. Yazaki, A. Liu, A. A. Raubitschek, J. E. Shively, and J. Y. Wong. Numerical selection of optimal tumor imaging agents with application to engineered antibodies. Cancer Biother. Radiopharm. 16:25–35, 2001.

    Google Scholar 

  51. Zhou, Y. Choice of designs and doses for early phase trials. Fundam. Clin. Pharmacol. 18:373–378, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph J. DiStefano III.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10439-011-0373-7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferl, G.Z., Wu, A.M. & DiStefano, J.J. A Predictive Model of Therapeutic Monoclonal Antibody Dynamics and Regulation by the Neonatal Fc Receptor (FcRn). Ann Biomed Eng 33, 1640–1652 (2005). https://doi.org/10.1007/s10439-005-7410-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7410-3

Key Words

Navigation