Skip to main content

Advertisement

Log in

SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE)

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Estrogen signaling is a critical pathway that plays a key role in the pathogenesis of breast cancer. In a previous transcriptional profiling study, we identified a novel panel of estrogen-induced genes in breast cancer. One of these genes is solute carrier family 22 member 5 (SLC22A5), which encodes a polyspecific organic cation transporter (also called OCTN2). In this study, we found that estrogen stimulates SLC22A5 expression robustly in an estrogen receptor (ER)-dependent manner and that SLC22A5 expression is associated with ER status in breast cancer cell lines and tissue specimens. Although the SLC22A5 proximal promoter is not responsive to estrogen, a downstream intronic enhancer confers estrogen inducibility. This intronic enhancer contains a newly identified estrogen-responsive element (ERE) (GGTCA-CTG-TGACT) and other transcription factor binding sites, such as a half ERE and a nuclear receptor related 1 (NR4A2/Nurr1) site. Estrogen induction of the luciferase reporter was dependent upon both the ERE and the NR4A2 site within the intronic enhancer. Small interfering RNA against either ER or Nurr1 inhibited estrogen induction of SLC22A5 expression, and chromatin immunoprecipitation assays confirmed the recruitment of both ER and Nurr1 to this enhancer. In functional assays, knockdown of SLC22A5 inhibited l-carnitine intake, resulted in lipid droplet accumulation, and suppressed the proliferation of breast cancer cells. These results demonstrate that SLC22A5 is an estrogen-dependent gene regulated via a newly identified intronic ERE. Since SLC22A5 is a critical regulator of carnitine homeostasis, lipid metabolism, and cell proliferation, SLC22A5 may serve as a potential therapeutic target for breast cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ER:

Estrogen receptor

ERE:

Estrogen-response element

ActD:

Actinomycin D

CHX:

Cycloheximide

ChIP:

Chromatin immunoprecipitation

siRNA:

Small interfering RNA

SLC22A5:

Solute carrier family 22 member 5

OCTN2:

Organic cation transporter

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  2. Russo J, Russo IH (2006) The role of estrogen in the initiation of breast cancer. J Steroid Biochem Mol Biol 102(1–5):89–96

    Article  PubMed  CAS  Google Scholar 

  3. Sommer S, Fuqua SA (2001) Estrogen receptor and breast cancer. Semin Cancer Biol 11(5):339–352

    Article  PubMed  CAS  Google Scholar 

  4. Shao W, Brown M (2004) Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy. Breast Cancer Res 6(1):39–52

    Article  PubMed  CAS  Google Scholar 

  5. Ali S, Coombes RC (2000) Estrogen receptor alpha in human breast cancer: occurrence and significance. J Mammary Gland Biol Neoplasia 5(3):271–281

    Article  PubMed  CAS  Google Scholar 

  6. Hall JM, Couse JF, Korach KS (2001) The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 276(40):36869–36872

    Article  PubMed  CAS  Google Scholar 

  7. Moggs JG, Orphanides G (2001) Estrogen receptors: orchestrators of pleiotropic cellular responses. EMBO Rep 2(9):775–781

    Article  PubMed  CAS  Google Scholar 

  8. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87(3):905–931

    Article  PubMed  CAS  Google Scholar 

  9. Marino M, Galluzzo P, Ascenzi P (2006) Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7(8):497–508

    Article  PubMed  CAS  Google Scholar 

  10. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29(14):2905–2919

    Article  PubMed  CAS  Google Scholar 

  11. Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, Brown PH (2011) Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol 25(9):1527–1538

    Article  PubMed  CAS  Google Scholar 

  12. Wang C, Mayer JA, Mazumdar A, Brown PH (2012) The rearranged during transfection/papillary thyroid carcinoma tyrosine kinase is an estrogen-dependent gene required for the growth of estrogen receptor positive breast cancer cells. Breast Cancer Res Treat. doi:10.1007/s10549-011-1775-9

  13. Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12(4):152–156

    Article  PubMed  CAS  Google Scholar 

  14. Moriarty K, Kim KH, Bender JR (2006) Minireview: estrogen receptor-mediated rapid signaling. Endocrinology 147(12):5557–5563

    Article  PubMed  CAS  Google Scholar 

  15. Kampa M, Pelekanou V, Castanas E (2008) Membrane-initiated steroid action in breast and prostate cancer. Steroids 73(9–10):953–960

    Article  PubMed  CAS  Google Scholar 

  16. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, Wang Q, Bekiranov S, Sementchenko V, Fox EA, Silver PA, Gingeras TR, Liu XS, Brown M (2006) Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38(11):1289–1297

    Article  PubMed  CAS  Google Scholar 

  17. Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, Yeo A, George J, Kuznetsov VA, Lee YK, Charn TH, Palanisamy N, Miller LD, Cheung E, Katzenellenbogen BS, Ruan Y, Bourque G, Wei CL, Liu ET (2007) Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 3(6):e87

    Article  PubMed  Google Scholar 

  18. DeNardo DG, Kim HT, Hilsenbeck S, Cuba V, Tsimelzon A, Brown PH (2005) Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes. Mol Endocrinol 19(2):362–378

    Article  PubMed  CAS  Google Scholar 

  19. Wu X, Prasad PD, Leibach FH, Ganapathy V (1998) cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem Biophys Res Commun 246(3):589–595

    Article  PubMed  CAS  Google Scholar 

  20. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273(32):20378–20382

    Article  PubMed  CAS  Google Scholar 

  21. Ramsay RR (1999) The role of the carnitine system in peroxisomal fatty acid oxidation. Am J Med Sci 318(1):28–35

    Article  PubMed  CAS  Google Scholar 

  22. Hoppel C (2003) The role of carnitine in normal and altered fatty acid metabolism. Am J Kidney Dis 41(4 Suppl 4):S4–S12

    Article  PubMed  CAS  Google Scholar 

  23. Longo N, Amat di San Filippo C, Pasquali M (2006) Disorders of carnitine transport and the carnitine cycle. Am J Med Genet C Semin Med Genet 142C(2):77–85

    Article  PubMed  CAS  Google Scholar 

  24. Santiago JL, Martinez A, de la Calle H, Fernandez-Arquero M, Figueredo MA, de la Concha EG, Urcelay E (2006) Evidence for the association of the SLC22A4 and SLC22A5 genes with type 1 diabetes: a case control study. BMC Med Genet 7:54

    Article  PubMed  Google Scholar 

  25. Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q, Gu X, Newman B, Van Oene M, Cescon D, Greenberg G, Griffiths AM, St George-Hyslop PH, Siminovitch KA (2004) Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat Genet 36(5):471–475

    Article  PubMed  CAS  Google Scholar 

  26. Shoji Y, Koizumi A, Kayo T, Ohata T, Takahashi T, Harada K, Takada G (1998) Evidence for linkage of human primary systemic carnitine deficiency with D5S436: a novel gene locus on chromosome 5q. Am J Hum Genet 63(1):101–108

    Article  PubMed  CAS  Google Scholar 

  27. Nezu J, Tamai I, Oku A, Ohashi R, Yabuuchi H, Hashimoto N, Nikaido H, Sai Y, Koizumi A, Shoji Y, Takada G, Matsuishi T, Yoshino M, Kato H, Ohura T, Tsujimoto G, Hayakawa J, Shimane M, Tsuji A (1999) Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet 21(1):91–94

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Ye J, Ganapathy V, Longo N (1999) Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc Natl Acad Sci USA 96(5):2356–2360

    Article  PubMed  CAS  Google Scholar 

  29. Tang NL, Ganapathy V, Wu X, Hui J, Seth P, Yuen PM, Wanders RJ, Fok TF, Hjelm NM (1999) Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum Mol Genet 8(4):655–660

    Article  PubMed  CAS  Google Scholar 

  30. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Article  PubMed  CAS  Google Scholar 

  31. Strecker TE, Shen Q, Zhang Y, Hill JL, Li Y, Wang C, Kim HT, Gilmer TM, Sexton KR, Hilsenbeck SG, Osborne CK, Brown PH (2009) Effect of lapatinib on the development of estrogen receptor-negative mammary tumors in mice. J Natl Cancer Inst 101(2):107–113

    Article  PubMed  CAS  Google Scholar 

  32. Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M (2000) Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103(6):843–852

    Article  PubMed  CAS  Google Scholar 

  33. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, Olson JA Jr, Marks JR, Dressman HK, West M, Nevins JR (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357

    Article  PubMed  CAS  Google Scholar 

  34. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL, Lapuk A, Neve RM, Qian Z, Ryder T, Chen F, Feiler H, Tokuyasu T, Kingsley C, Dairkee S, Meng Z, Chew K, Pinkel D, Jain A, Ljung BM, Esserman L, Albertson DG, Waldman FM, Gray JW (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10(6):529–541

    Article  PubMed  CAS  Google Scholar 

  35. Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y, d’Assignies MS, Bergh J, Lidereau R, Ellis P, Harris AL, Klijn JG, Foekens JA, Cardoso F, Piccart MJ, Buyse M, Sotiriou C (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13(11):3207–3214

    Article  PubMed  CAS  Google Scholar 

  36. Ginestier C, Cervera N, Finetti P, Esteyries S, Esterni B, Adelaide J, Xerri L, Viens P, Jacquemier J, Charafe-Jauffret E, Chaffanet M, Birnbaum D, Bertucci F (2006) Prognosis and gene expression profiling of 20q13-amplified breast cancers. Clin Cancer Res 12(15):4533–4544

    Article  PubMed  CAS  Google Scholar 

  37. Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA, Booser D, Theriault RL, Buzdar AU, Dempsey PJ, Rouzier R, Sneige N, Ross JS, Vidaurre T, Gomez HL, Hortobagyi GN, Pusztai L (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24(26):4236–4244

    Article  PubMed  CAS  Google Scholar 

  38. Ivshina AV, George J, Senko O, Mow B, Putti TC, Smeds J, Lindahl T, Pawitan Y, Hall P, Nordgren H, Wong JE, Liu ET, Bergh J, Kuznetsov VA, Miller LD (2006) Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer. Cancer Res 66(21):10292–10301

    Article  PubMed  CAS  Google Scholar 

  39. Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J, Murray E, Hampton G, Walker JR, Ho S, Krause A, Evans DB, Dixon JM (2007) Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics 17(10):813–826

    Article  PubMed  CAS  Google Scholar 

  40. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  PubMed  CAS  Google Scholar 

  41. Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S (2006) X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9(2):121–132

    Article  PubMed  CAS  Google Scholar 

  42. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  43. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  PubMed  Google Scholar 

  44. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365(9460):671–679

    PubMed  CAS  Google Scholar 

  45. Yu K, Ganesan K, Miller LD, Tan P (2006) A modular analysis of breast cancer reveals a novel low-grade molecular signature in estrogen receptor-positive tumors. Clin Cancer Res 12(11 Pt 1):3288–3296

    Article  PubMed  CAS  Google Scholar 

  46. Saal LH, Johansson P, Holm K, Gruvberger-Saal SK, She QB, Maurer M, Koujak S, Ferrando AA, Malmstrom P, Memeo L, Isola J, Bendahl PO, Rosen N, Hibshoosh H, Ringner M, Borg A, Parsons R (2007) Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci USA 104(18):7564–7569

    Article  PubMed  CAS  Google Scholar 

  47. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, Nordgren H, Farmer P, Praz V, Haibe-Kains B, Desmedt C, Larsimont D, Cardoso F, Peterse H, Nuyten D, Buyse M, Van de Vijver MJ, Bergh J, Piccart M, Delorenzi M (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98(4):262–272

    Article  PubMed  CAS  Google Scholar 

  48. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S, Lapuk A, Wang NJ, Kuo WL, Stilwell JL, Pinkel D, Albertson DG, Waldman FM, McCormick F, Dickson RB, Johnson MD, Lippman M, Ethier S, Gazdar A, Gray JW (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6):515–527

    Article  PubMed  CAS  Google Scholar 

  49. Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU (1986) An estrogen-responsive element derived from the 5′ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 46(7):1053–1061

    Article  PubMed  CAS  Google Scholar 

  50. Law SW, Conneely OM, DeMayo FJ, O’Malley BW (1992) Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 6(12):2129–2135

    Article  PubMed  CAS  Google Scholar 

  51. Mages HW, Rilke O, Bravo R, Senger G, Kroczek RA (1994) NOT, a human immediate-early response gene closely related to the steroid/thyroid hormone receptor NAK1/TR3. Mol Endocrinol 8(11):1583–1591

    Article  PubMed  CAS  Google Scholar 

  52. Murphy EP, Dobson AD, Keller C, Conneely OM (1996) Differential regulation of transcription by the NURR1/NUR77 subfamily of nuclear transcription factors. Gene Expr 5(3):169–179

    PubMed  CAS  Google Scholar 

  53. Mueller E, Sarraf P, Tontonoz P, Evans RM, Martin KJ, Zhang M, Fletcher C, Singer S, Spiegelman BM (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1(3):465–470

    Article  PubMed  CAS  Google Scholar 

  54. Barkhem T, Haldosen LA, Gustafsson JA, Nilsson S (2002) pS2 Gene expression in HepG2 cells: complex regulation through crosstalk between the estrogen receptor alpha, an estrogen-responsive element, and the activator protein 1 response element. Mol Pharmacol 61(6):1273–1283

    Article  PubMed  CAS  Google Scholar 

  55. Schausi D, Tiffoche C, Thieulant ML (2003) Regulation of the intronic promoter of rat estrogen receptor alpha gene, responsible for truncated estrogen receptor product-1 expression. Endocrinology 144(7):2845–2855

    Article  PubMed  CAS  Google Scholar 

  56. Uray IP, Shen Q, Seo HS, Kim H, Lamph WW, Bissonnette RP, Brown PH (2009) Rexinoid-induced expression of IGFBP-6 requires RARbeta-dependent permissive cooperation of retinoid receptors and AP-1. J Biol Chem 284(1):345–353

    Article  PubMed  CAS  Google Scholar 

  57. Hurtado A, Holmes KA, Geistlinger TR, Hutcheson IR, Nicholson RI, Brown M, Jiang J, Howat WJ, Ali S, Carroll JS (2008) Regulation of ERBB2 by oestrogen receptor-PAX2 determines response to tamoxifen. Nature 456(7222):663–666

    Article  PubMed  CAS  Google Scholar 

  58. Borum PR (1980) Regulation of the carnitine concentration in plasma. In: Frenkel RA, McGarry JD (eds) Carnitine biosynthesis, metabolism, and function. Academic Press, New York, pp 115–126

    Google Scholar 

  59. Takiyama N, Matsumoto K (1998) Age-and sex-related differences of serum carnitine in a Japanese population. J Am Coll Nutr 17(1):71–74

    PubMed  CAS  Google Scholar 

  60. Campbell SE, Febbraio MA (2001) Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle. Am J Physiol Endocrinol Metab 281(4):E803–E808

    PubMed  CAS  Google Scholar 

  61. Campbell SE, Mehan KA, Tunstall RJ, Febbraio MA, Cameron-Smith D (2003) 17beta-estradiol upregulates the expression of peroxisome proliferator-activated receptor alpha and lipid oxidative genes in skeletal muscle. J Mol Endocrinol 31(1):37–45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the NIH grant R01-CA123246. The authors thank Michelle I. Savage for proofreading the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Powel H. Brown.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Uray, I.P., Mazumdar, A. et al. SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE). Breast Cancer Res Treat 134, 101–115 (2012). https://doi.org/10.1007/s10549-011-1925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1925-0

Keywords

Navigation