Skip to main content

Advertisement

Log in

Hormonal Modulation of Hepatic cAMP Prevents Estradiol 17β-d-Glucuronide-Induced Cholestasis in Perfused Rat Liver

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Estradiol-17β-d-glucuronide (E17G) induces cholestasis in vivo, endocytic internalization of the canalicular transporters multidrug resistance-associated protein 2 (Abcc2) and bile salt export pump (Abcb11) being a key pathomechanism. Cyclic AMP (cAMP) prevents cholestasis by targeting these transporters back to the canalicular membrane. In hepatocyte couplets, glucagon and salbutamol, both of which increase cAMP, prevented E17G action by stimulating the trafficking of these transporters by different mechanisms, namely: glucagon activates a protein kinase A-dependent pathway, whereas salbutamol activates an exchange-protein activated by cAMP (Epac)-mediated, microtubule-dependent pathway.

Methods

The present study evaluated whether glucagon and salbutamol prevent E17G-induced cholestasis in a more physiological model, i.e., the perfused rat liver (PRL). Additionally, the preventive effect of in vivo alanine administration, which induces pancreatic glucagon secretion, was evaluated.

Results

In PRLs, glucagon and salbutamol prevented E17G-induced decrease in both bile flow and the secretory activity of Abcc2 and Abcb11. Salbutamol prevention fully depended on microtubule integrity. On the other hand, glucagon prevention was microtubule-independent only at early time periods after E17G administration, but it was ultimately affected by the microtubule disrupter colchicine. Cholestasis was associated with endocytic internalization of Abcb11 and Abcc2, the intracellular carriers being partially colocalized with the endosomal marker Rab11a. This effect was completely prevented by salbutamol, whereas some transporter-containing vesicles remained colocalized with Rab11a after glucagon treatment. In vivo, alanine administration increased hepatic cAMP and accelerated the recovery of bile flow and Abcb11/Abcc2 transport function after E17G administration. The initial recovery afforded by alanine was microtubule-independent, but microtubule integrity was required to sustain this protective effect.

Conclusion

We conclude that modulation of cAMP levels either by direct administration of cAMP modulators or by physiological manipulations leadings to hormone-mediated increase of cAMP levels (alanine administration), prevents estrogen-induced cholestasis in models with preserved liver architecture, through mechanisms similar to those arisen from in vitro studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Abcb11:

Bile salt export pump

Abcc2:

Multidrug-resistance-associated protein 2

Ala:

Alanine

E17G:

Estradiol 17β-d-glucuronide

DNP-G:

S-(2,4-Dinitrophenyl)-glutathione

TC:

Sodium taurocholate

Sal:

Salbutamol

Glu:

Glucagon

DMSO:

Dimethyl sulfoxide

PRL:

Perfused rat liver

References

  1. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537–592.

    Article  PubMed  CAS  Google Scholar 

  2. Gatmaitan ZC, Arias IM. ATP-dependent transport systems in the canalicular membrane of the hepatocyte. Physiol Rev. 1995;75:261–275.

    PubMed  CAS  Google Scholar 

  3. Esteller A. Physiology of bile secretion. World J Gastroenterol. 2008;14:5641–5649.

    Article  PubMed  CAS  Google Scholar 

  4. Crocenzi FA, Mottino AD, Cao J, et al. Estradiol-17beta-d-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol. 2003;285:G449–G459.

    PubMed  CAS  Google Scholar 

  5. Trauner M, Meier PJ, Boyer JL. Molecular regulation of hepatocellular transport systems in cholestasis. J Hepatol. 1999;31:165–178.

    Article  PubMed  CAS  Google Scholar 

  6. Vore M, Liu Y, Huang L. Cholestatic properties and hepatic transport of steroid glucuronides. Drug Metab Rev. 1997;29:183–203.

    Article  PubMed  CAS  Google Scholar 

  7. Adlercreutz H, Tikkanen MJ, Wichmann K, et al. Recurrent jaundice in pregnancy. IV. Quantitative determination of urinary and biliary estrogens, including studies in pruritus gravidarum. J Clin Endocrinol Metab. 1974;38:51–57.

    Article  PubMed  CAS  Google Scholar 

  8. Stieger B, Fattinger K, Madon J, et al. Drug- and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology. 2000;118:422–430.

    Article  PubMed  CAS  Google Scholar 

  9. Vallejo M, Briz O, Serrano MA, et al. Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol. 2006;44:1150–1157.

    Article  PubMed  CAS  Google Scholar 

  10. Mottino AD, Cao J, Veggi LM, et al. Altered localization and activity of canalicular Mrp2 in estradiol-17beta-d-glucuronide-induced cholestasis. Hepatology. 2002;35:1409–1419.

    Article  PubMed  CAS  Google Scholar 

  11. Mottino AD, Crocenzi FA, Pozzi EJ, et al. Role of microtubules in estradiol-17beta-d-glucuronide-induced alteration of canalicular Mrp2 localization and activity. Am J Physiol Gastrointest Liver Physiol. 2005;288:G327–G336.

    Article  PubMed  CAS  Google Scholar 

  12. Roma MG, Crocenzi FA. Sanchez Pozzi EA. Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond). 2008;114:567–588.

    Article  CAS  Google Scholar 

  13. Kipp H, Arias IM. Trafficking of canalicular ABC transporters in hepatocytes. Annu Rev Physiol. 2002;64:595–608.

    Article  PubMed  CAS  Google Scholar 

  14. Roelofsen H, Soroka CJ, Keppler D, et al. Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J Cell Sci. 1998;111:1137–1145.

    PubMed  CAS  Google Scholar 

  15. Steinberg SF, Chow YK, Bilezikian JP. Cyclic AMP and guanine nucleotide regulatory proteins. In: Arias IM, Jakoby WB, Popper H, eds. The Liver: Biology and Pathobiology. 2nd ed. New York: Raven Press, Ltd; 2003:769–776.

    Google Scholar 

  16. Branum GD, Bowers BA, Watters CR, et al. Biliary response to glucagon in humans. Ann Surg. 1991;213:335–340.

    Article  PubMed  CAS  Google Scholar 

  17. Morgan NG, Blackmore PF, Exton JH. Age-related changes in the control of hepatic cyclic AMP levels by alpha 1- and beta 2-adrenergic receptors in male rats. J Biol Chem. 1983;258:5103–5109.

    PubMed  CAS  Google Scholar 

  18. Bollen M, Keppens S, Stalmans W. Specific features of glycogen metabolism in the liver. Biochem J. 1998;336:19–31.

    PubMed  CAS  Google Scholar 

  19. Zucchetti AE, Barosso IR, Boaglio A, et al. Prevention of estradiol 17beta-d-glucuronide-induced canalicular transporter internalization by hormonal modulation of cAMP in rat hepatocytes. Mol Biol Cell. 2011;22:3902–3915.

    Article  PubMed  CAS  Google Scholar 

  20. Crocenzi FA. Sanchez Pozzi EJ, Ruiz ML et al. Ca(2 +)-dependent protein kinase C isoforms are critical to estradiol 17beta-d-glucuronide-induced cholestasis in the rat. Hepatology. 2008;48:1885–1895.

    Article  PubMed  CAS  Google Scholar 

  21. Hinchman CA, Matsumoto H, Simmons TW, et al. Intrahepatic conversion of a glutathione conjugate to its mercapturic acid. Metabolism of 1-chloro-2,4-dinitrobenzene in isolated perfused rat and guinea pig livers. J Biol Chem. 1991;266:22179–22185.

    PubMed  CAS  Google Scholar 

  22. Talalay P. Enzymic analysis of steroid hormones. Methods Biochem Anal. 1960;8:119–143.

    Article  PubMed  CAS  Google Scholar 

  23. Muller WA, Faloona GR, Unger RH. The effect of alanine on glucagon secretion. J Clin Invest. 1971;50:2215–2218.

    Article  PubMed  CAS  Google Scholar 

  24. Porcellati F, Pampanelli S, Rossetti P, et al. Effect of the amino acid alanine on glucagon secretion in non-diabetic and type 1 diabetic subjects during hyperinsulinaemic euglycaemia, hypoglycaemia and post-hypoglycaemic hyperglycaemia. Diabetologia. 2007;50:422–430.

    Article  PubMed  CAS  Google Scholar 

  25. Rocha DM, Faloona GR, Unger RH. Glucagon-stimulating activity of 20 amino acids in dogs. J Clin Invest. 1972;51:2346–2351.

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka K, Inoue S, Saito S, et al. Hepatic vagal amino acid sensors modulate amino acid-induced insulin and glucagon secretion in the rat. J Auton Nerv Syst. 1993;42:225–231.

    Article  PubMed  CAS  Google Scholar 

  27. Jendrassik J, Grof P. Vereinfachte photometrische Methode zur Bestimmung des Blut-bilirubins. Biochem Z. 1938;297:81–89.

    CAS  Google Scholar 

  28. Davio CA, Cricco GP, Bergoc RM, et al. H1 and H2 histamine receptors in N-nitroso-N-methylurea (NMU)-induced carcinomas with atypical coupling to signal transducers. Biochem Pharmacol. 1995;50:91–96.

    Article  PubMed  CAS  Google Scholar 

  29. Sabbatini ME, Villagra A, Davio CA, et al. Atrial natriuretic factor stimulates exocrine pancreatic secretion in the rat through NPR-C receptors. Am J Physiol Gastrointest Liver Physiol. 2003;285:G929–G937.

    PubMed  CAS  Google Scholar 

  30. Lowry OH, Rosembrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–275.

    PubMed  CAS  Google Scholar 

  31. Wakabayashi Y, Arias IM. Apical recycling of canalicular ABC transporters. In: Arias IM, Wolkoff A, Boyer JM, Shafritz D, Fausto N, Harvey A, eds. The Liver: Biology and Pathobiology, 5. Chichester: Wiley; 2009:349–358.

    Google Scholar 

  32. Wakabayashi Y, Lippincott-Schwartz J, Arias IM. Intracellular trafficking of bile salt export pump (ABCB11) in polarized hepatic cells: constitutive cycling between the canalicular membrane and rab11-positive endosomes. Mol Biol Cell. 2004;15:3485–3496.

    Article  PubMed  CAS  Google Scholar 

  33. Wang W, Soroka CJ, Mennone A, et al. Radixin is required to maintain apical canalicular membrane structure and function in rat hepatocytes. Gastroenterology. 2006;131:878–884.

    Article  PubMed  CAS  Google Scholar 

  34. Huang L, Smit JW, Meijer DK, et al. Mrp2 is essential for estradiol-17beta(beta-d-glucuronide)-induced cholestasis in rats. Hepatology. 2000;32:66–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We deeply thank Dr. Carlos Davio (Cátedra de Química Medicinal, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires) for his expert advice and guidance in cAMP measurements. This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICTs 2006 No 02012 and 2010 No 1197), Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 0691), and Fundación Allende.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Sánchez Pozzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zucchetti, A.E., Barosso, I.R., Boaglio, A.C. et al. Hormonal Modulation of Hepatic cAMP Prevents Estradiol 17β-d-Glucuronide-Induced Cholestasis in Perfused Rat Liver. Dig Dis Sci 58, 1602–1614 (2013). https://doi.org/10.1007/s10620-013-2558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2558-4

Keywords

Navigation