Skip to main content

Advertisement

Log in

The thiopurines: An update

  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

The thiopurine drugs, 6-mercaptopurine (6-MP), 6-thioguanine (6-TG) are commonly used cytotoxic agents. A derivative of 6-MP, azathioprine, is commonly used as an immunosuppressant. A prominent route for the metabolism of these agents is mediated by the enzyme thiopurine methyltransferase (TPMT). This enzyme exhibits considerable inter-individual variation in activity, partly due to the presence of common genetic polymorphisms, which influence cytotoxicity of the thiopurine drugs. Variations in the number of tandem repeats in the 5′ promoter region have also been shown to influence TPMT expression in vitro. In this article, we review the impact of variations in TPMT activity on sensitivity to the thiopurine drugs in vitro and also in vivo in terms of their clinical efficacy and toxicity. A possible relationship between TPMT and secondary malignancies is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Elion GB: Symposium on immunosuppressive drugs. Biochemistry and pharmacology of purine analogues. Federation Proceedings 26(3): 898–904, 1967.

    CAS  PubMed  Google Scholar 

  2. Burchenal JH, Murphy ML, Ellison RR: Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in the tratement of acute leukaemia and allied diseases. Blood 8: 965–999, 1953.

    CAS  PubMed  Google Scholar 

  3. Murray JE, Merrill JP, Harrison JH, et al.: Prolonged survival of human kidney homografts by immunosuppresssive drug therapy. New England Journal of Medicine 268: 1315–1323, 1963.

    CAS  PubMed  Google Scholar 

  4. Lennard L: The clinical pharmacology of 6-mercaptopurine. European Journal of Clinical Pharmacology 43(4): 329–339, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Bertino JR: Improving the curability of acute leukemia: Pharmacologic approaches. Seminars in Hematology 28(3): 9–11, 1991.

    CAS  PubMed  Google Scholar 

  6. Dervieux T, Blanco JG, Krynetski EY, Vanin EF, Roussel MF, Relling MV: Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Research 61(15): 5810–5816, 2001.

    CAS  PubMed  Google Scholar 

  7. Coulthard SA, Hogarth LA, Little M, Matheson EC, Redfern CP, Minto L, Hall AG: The effect of thiopurine methyltransferase expression on sensitivity to thiopurine drugs. Mol Pharmacol 62(1): 102–109, 2002.

    Article  CAS  PubMed  Google Scholar 

  8. Maybaum J, Mandel HG: Differential chromatid damage induced by 6-thioguanine in CHO cells. Experimental Cell Research 135(2): 465–468, 1981.

    Article  CAS  PubMed  Google Scholar 

  9. Maybaum J, Mandel HG: Unilateral chromatid damage: A new basis for 6-thioguanine cytotoxicity. Cancer Research 43(8): 3852–3856, 1983.

    CAS  PubMed  Google Scholar 

  10. Christie NT, Drake S, Meyn RE, Nelson JA: 6-Thioguanine-induced DNA damage as a determinant of cytotoxicity in cultured chinese hamster ovary cells. Cancer Research 44(9): 3665–3671, 1984.

    CAS  PubMed  Google Scholar 

  11. Tay BS, Lilley RM, Murray AW, Atkinson MR: Inhibition of phosphoribosyl pyrophosphate amidotransferase from ehrlich ascites-tumour cells by thiopurine nucleotides. Biochemical Pharmacology 18(4): 936–938, 1969.

    Article  CAS  PubMed  Google Scholar 

  12. Pan BF, Nelson JA: Characterization of the DNA damage in 6-thioguanine-treated cells. Biochemical Pharmacology 40(5): 1063–1069, 1990.

    CAS  PubMed  Google Scholar 

  13. Bodell WJ: Molecular dosimetry of sister chromatid exchange induction in 9L cells treated with 6-thioguanine. Mutagenesis 6(3): 175–177, 1991.

    CAS  PubMed  Google Scholar 

  14. Swann PF, Waters TR, Moulton DC, Xu Y-Z, Zheng Q, Edwards M, Mace R: Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273(5278): 1109–1112, 1996.

    CAS  PubMed  Google Scholar 

  15. Karran P: Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 22(12): 1931–1937, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Zimm S, Collins JM, Riccardi R, et al.: Variable bioavailability of oral mercaptopurine. Is maintenance chemotherapy in acute lymphoblastic leukemia being optimally delivered? New England Journal of Medicine 308(17): 1005–1009, 1983.

    CAS  PubMed  Google Scholar 

  17. Loo TL, Luce JK, Sullivan MP, Frei E 3d: Clinical pharmacologic observations on 6-mercaptopurine and 6- methylthiopurine ribonucleoside. Clinical Pharmacology & Therapeutics 9(2): 180–194, 1968.

    CAS  Google Scholar 

  18. LePage GA, Whitecar JP: Pharmacology of 6-thioguanine in man. Cancer Research 31(11): 1627–1631, 1971.

    CAS  PubMed  Google Scholar 

  19. Konits PH, Egorin MJ, Van Echo DA, Aisner J, Andrews PA, May ME, Bachur NR, Wiernik PH: Phase II evaluation and plasma pharmacokinetics of high-dose intravenous 6-thioguanine in patients with colorectal carcinoma. Cancer Chemotherapy & Pharmacology 8(2): 199–203, 1982.

    CAS  Google Scholar 

  20. Brox LW, Birkett L, Belch A: Clinical pharmacology of oral thioguanine in acute myelogenous leukemia. Cancer Chemotherapy & Pharmacology 6(1): 35–38, 1981.

    CAS  Google Scholar 

  21. Chan GL, Erdmann GR, Gruber SA, Matas AJ, Canafax DM: Azathioprine metabolism: Pharmacokinetics of 6-mercaptopurine, 6-thiouric acid and 6-thioguanine nucleotides in renal transplant patients. J Clin Pharmacol 30(4): 358–363, 1990.

    CAS  PubMed  Google Scholar 

  22. Ding TL, Benet LZ: Comparative bioavailability and pharmacokinetic studies of azathioprine and 6-mercaptopurine in the rhesus monkey. Drug Metab Dispos 7(6): 373–377, 1979.

    CAS  PubMed  Google Scholar 

  23. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM: Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. Journal of Pediatrics 119(6): 985–989, 1991.

    CAS  PubMed  Google Scholar 

  24. Vogt MH, Stet EH, De Abreu RA, Bokkerink JP, Lambooy LHJ, Trijbels FJ: The importance of methylthio-imp for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity in molt F4 human malignant T-lymphoblasts. Biochimica et Biophysica Acta 1181(2): 189–194, 1993.

    CAS  PubMed  Google Scholar 

  25. Erb N, Harms DO, Janka-Schaub G: Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemotherapy and Pharmacology 42(4): 266–272, 1998.

    Article  CAS  PubMed  Google Scholar 

  26. Van Loon JA, Weinshilboum RM: Human lymphocyte thiopurine methyltransferase pharmacogenetics: Effect of phenotype on 6-mercaptopurine-induced inhibition of mitogen stimulation. Journal of Pharmacology and Experimental Therapeutics 242(1): 21–26, 1987.

    PubMed  Google Scholar 

  27. Weinshilboum RM, Sladek SL: Mercaptopurine pharmacogenetics: Monogenic inheritance of erythrocyte thiopurine methyltransferase activity. American Journal of Human Genetics 32(5): 651–662, 1980.

    CAS  PubMed  Google Scholar 

  28. Vuchetich JP, Weinshilboum RM, Price RA: Segregation analysis of human red blood cell thiopurine methyltransferase activity. Genetic Epidemiology 12(1): 1–11, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Coulthard SA, Rabello C, Robson J, Howell C, Minto L, Middleton PG, Gandhi MK, Jackson G, McLelland J, O'Brien H, Smith S, Reid MM, Pearson ADJ, Hall AG: A comparison of molecular and enzyme-based assays for the detection of thiopurine methyltransferase mutations. British Journal of Haematology 110(3): 599–604, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Hongeng S, Sasanakul W, Chuansumrit A, Pakakasama S, Chattananon A, Hathirat P: Frequency of thiopurine s-methyltransferase genetic variation in thai children with acute leukemia. Med Pediatr Oncol 35(4): 410–414, 2000.

    Article  CAS  PubMed  Google Scholar 

  31. Alves S, Amorim A, Ferreira F, Prata MJ: Influence of the variable number of tandem repeats located in the promoter region of the thiopurine methyltransferase gene on enzymatic activity. Clinical Pharmacology and Therapeutics 70(2): 165–174, 2001.

    CAS  PubMed  Google Scholar 

  32. Hamdy SI, Hiratsuka M, Narahara K, Endo N, El Enany M, Moursi N, Ahmed MS, Mizugaki M: Genotype and allele frequencies of TPMT, NAT2, GST, SULT1A1 and MDR-1 in the egyptian population. British Journal of Clinical Pharmacology 55(6): 560–569, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Larovere LE, de Kremer RD, Lambooy LH, De Abreu RA: Genetic polymorphism of thiopurine s-methyltransferase in argentina. Ann Clin Biochem 40(Pt 4): 388–393, 2003.

    CAS  PubMed  Google Scholar 

  34. Reis M, Santoro A, Suarez-Kurtz G: Thiopurine methyltransferase phenotypes and genotypes in Brazilians. Pharmacogenetics 13(6): 371–373, 2003.

    Article  PubMed  Google Scholar 

  35. Lee D, Szumlanski C, Houtman J, Honchel R, Rojas K, Overhauser J, Wieben ED, Weinshilboum RM: Thiopurine methyltransferase pharmacogenetics: Cloning of human liver CDNA and a processed pseudogene on human chromosome 18q21.1. Drug Metabolism & Disposition 23(3): 398–405, 1995.

    CAS  Google Scholar 

  36. Szumlanski C, Otterness D, Her C, Lee D, Brandriff B, Kelsell D, Spurr N, Lennard L, Wieben E, Weinshilboum R: Thiopurine methyltransferase pharmacogenetics: Human gene cloning and characterization of a common polymorphism. DNA & Cell Biology 15(1): 17-30, 1996.

    Google Scholar 

  37. Krynetski EY, Fessing MY, Yates CR, Sun D, Schuetz JD, Evans WE: Promoter and intronic sequences of the human thiopurine S-methyltransferase (TPMT) gene isolated from a human Pac1 genomic library. Pharmaceutical Research 14(12): 1672–1678, 1997.

    Article  CAS  PubMed  Google Scholar 

  38. Seki T, Tanaka T, Nakamura Y: Genomic structure and multiple single-nucleotide polymorphisms (SNPs) of the thiopurine s-methyltransferase (TPMT) gene. J Hum Genet 45(5): 299–302, 2000.

    CAS  PubMed  Google Scholar 

  39. Fessing MY, Krynetski EY, Zambetti GP, Evans WE: Functional characterization of the human thiopurine S-methyltransferase (TPMT) gene promoter. European Journal of Biochemistry 256(3): 510–517, 1998.

    Article  CAS  PubMed  Google Scholar 

  40. Spire-Vayron, de la Moureyre CSV, Debuysere H, Fazio F, Sergent E, Bernard C, Sabbagh N, Marez D, Lo Guidice JM, D'halluin J-C, Broly F: Characterization of a Variable number tandem repeat region in the thiopurine S-methyltransferase gene promoter. Pharmacogenetics 9(2): 189–198, 1999.

    Google Scholar 

  41. Yan L, Zhang SC, Eiff B, Szumlanski CL, Powers M, O'Brien JF, Weinshilboum RM: Thiopurine methyltransferase polymorphic tandem repeat: Genotype-phenotype correlation analysis. Clinical Pharmacology and Therapeutics 68(2): 210–219, 2000.

    CAS  PubMed  Google Scholar 

  42. Marinaki AM, Arenas M, Khan ZH, Lewis CM, Shobowale-Bakre EL, Escuredo E, Fairbanks LD, Mayberry JF, Wicks AC, Ansari A, Sanderson J, Duley JA: Genetic determinants of the thiopurine methyltransferase intermediate activity phenotype in british asians and caucasians. Pharmacogenetics 13(2): 97–105, 2003.

    Article  CAS  PubMed  Google Scholar 

  43. Coulthard SA, Howell C, Robson J, Hall AG: The relationship between thiopurine methyltransferase activity and genotype in blasts from patients with acute leukemia. Blood 92(8): 2856–2862, 1998.

    CAS  PubMed  Google Scholar 

  44. Schaeffeler E, Stanulla M, Greil J, Schrappe M, Eichelbaum M, Zanger UM, Schwab MA: Novel TPMT missense mutation associated with TPMT deficiency in a 5-year-old boy with ALL. Leukemia 17(7): 1422–1424, 2003.

    Article  CAS  PubMed  Google Scholar 

  45. Hamdan-Khalil R, Allorge D, Lo-Guidice JM, Cauffiez C, Chevalier D, Spire C, Houdret N, Libersa C, Lhermitte M, Colombel JF, Gala JL, Broly F: In vitro characterization of four novel non-functional variants of the thiopurine S-methyltransferase. Biochem Biophys Res Commun 309(4): 1005–1010, 2003.

    Article  CAS  PubMed  Google Scholar 

  46. McLeod HL, Krynetski EY, Relling MV, Evans WE: Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14(4): 567–572, 2000.

    Article  CAS  PubMed  Google Scholar 

  47. Coulthard SA, Hall AG: Recent advances in the pharmacogenomics of thiopurine methyltransferase. Pharmacogenomics J 1(4): 254–261, 2001.

    CAS  PubMed  Google Scholar 

  48. Krynetski EY, Schuetz JD, Galpin AJ, Pui CH, Relling MV, Evans WE: A single point mutation leading to loss of catalytic activity in human thiopurine S-methyltransferase. Proc Natl Acad Sci USA 92(4): 949–953, 1995.

    CAS  PubMed  Google Scholar 

  49. Tai HL, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, Evans WE: Thiopurine S-methyltransferase deficiency: Two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in caucasians. American Journal of Human Genetics 58(4): 694–702, 1996.

    CAS  PubMed  Google Scholar 

  50. Tai HL, Krynetski EY, Schuetz EG, Yanishevski Y, Evans WE: Enhanced proteolysis of thiopurine S-methyltransferase (TPMT) encoded by mutant alleles in humans (TPMT*3A, TPMT*2): Mechanisms for the genetic polymorphism of TPMT activity.Proc Natl AcadSci USA 94(12): 6444–6449, 1997.

    CAS  Google Scholar 

  51. Tai HL, Fessing MY, Bonten EJ, Yanishevsky Y, d'Azzo A, Krynetski EY, Evans WE: Enhanced proteasomal degradation of mutant human thiopurine S-methyltransferase (TPMT) in mammalian cells: Mechanism for TPMT protein deficiency inherited by TPMT*2, TPMT*3A, TPMT*3B or TPMT*3C. Pharmacogenetics 9(5): 641–650, 1999.

    CAS  PubMed  Google Scholar 

  52. Otterness DM, Szumlanski CL, Wood TC, Weinshilboum RM: Human thiopurine methyltransferase pharmacogenetics—kindred with a terminal exon splice junction mutation that results in loss of activity. Journal of Clinical Investigation 101(5): 1036–1044, 1998.

    CAS  PubMed  Google Scholar 

  53. de la Moureyre CSV, Debuysere H, Mastain B, Vinner E, Marez D, Lo Guidice Chevalier D, Brique S, Motte K, Colombel JF, Turck D, Noel C, Flipo RM, Pol A, Lhermitte M, Lafitte JJ, Libersa C, Broly F: Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a european population. British Journal of Pharmacology 125(4): 879–887, 1998.

    Google Scholar 

  54. Yan L, Zhang S, Eiff B, Szumlanski C, Powers M, O'Brien J, Weinshilboum R: Thiopurine methyltransferase (TPMT) promoter variable number tandem repeate (VNTR) polymorphism: genotype-pehnotype correlation analysis for 1211 patients. Clinical Pharmacology and Therapeutics 67(2): 127, 2000.

    Google Scholar 

  55. Alves S, Ferreira F, Prata MJ, Amorim A: Characterization of three new VNTR alleles in the promoter region of the TPMT gene. Hum Mutat 15(1): 121, 2000.

    Article  CAS  PubMed  Google Scholar 

  56. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM: Thiopurine pharmacogenetics in leukemia: Correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clinical Pharmacology and Therapeutics 41(1): 18–25, 1987.

    CAS  PubMed  Google Scholar 

  57. Lennard L, Welch JC, Lilleyman JS: Thiopurine drugs in the treatment of childhood leukaemia: The influence of inherited thiopurine methyltransferase activity on drug metabolism and cytotoxicity. British Journal of Clinical Pharmacology 44(5): 455–461, 1997.

    Article  CAS  PubMed  Google Scholar 

  58. Lilleyman JS, Lennard L: Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 343(8907): 1188–1190, 1994.

    Article  CAS  PubMed  Google Scholar 

  59. Bostrom B, Erdmann G: Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. American Journal of Pediatric Hematology-Oncology 15(1): 80–86, 1993.

    CAS  Google Scholar 

  60. McLeod HL, Relling MV, Liu Q, Pui C-H, Evans WE: Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 85(7): 1897–1902, 1995.

    CAS  PubMed  Google Scholar 

  61. Lennard L, Van Loon JA, Weinshilboum RM: Pharmacogenetics of acute azathioprine toxicity: Relationship to thiopurine methyltransferase genetic polymorphism. Clinical Pharmacology & Therapeutics 46(2): 149–154, 1989.

    CAS  Google Scholar 

  62. Ben Ari Z, Mehta A, Lennard L, Burroughs AK: Azathioprine-induced myelosuppression due to thiopurine methyltransferase deficiency in a patient with autoimmune hepatitis. J Hepatol 23(3): 351–354, 1995.

    CAS  PubMed  Google Scholar 

  63. Leipold G, Schutz E, Haas JP, Oellerich M: Azathioprine-induced severe pancytopenia due to a homozygous two—point mutation of the thiopurine methyltransferase gene in a patient with juvenile HLA-B27-associated spondylarthritis. Arthritis & Rheumatism 40(10): 1896–1898, 1997.

    CAS  Google Scholar 

  64. Jackson AP, Hall AG, McLelland J: Thiopurine methyltransferase levels should be measured before commencing patients on azathioprine. British Journal of Dermatology 136(1): 133–134, 1997.

    CAS  PubMed  Google Scholar 

  65. Lennard L, Gibson BES, Nicole T, Lilleyman JS: Congenital thiopurine methyltransferase deficiency and 6- mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Archives of Disease in Childhood 69(5): 577–579, 1993.

    CAS  PubMed  Google Scholar 

  66. Harms DO, Janka-Schaub GE: Co-operative study group for childhood acute lymphoblastic leukemia (COALL): Long-term follow-up of trials 82, 85, 89 and 92. Leukemia 14(12): 2234–2239, 2000.

    Article  CAS  PubMed  Google Scholar 

  67. Black AJ, McLeod HL, Capell HA, Powrie RH, Matowe LK, Pritchard SC, Collie-Duguid ESR, Reid DM: Thiopurine methyltransferase genotype predicts therapy-limiting severe toxicity from azathioprine. Annals of Internal Medicine 129(9): 716–718, 1998.

    CAS  PubMed  Google Scholar 

  68. Krynetski EY, Evans WE: Pharmacogenetics as a molecular basis for individualized drug therapy: the thiopurine S-methyltransferase paradigm. Pharm Res 16(3): 342–349, 1999.

    Article  CAS  PubMed  Google Scholar 

  69. Evans WE, Rodman J, Relling MV, Crom WR, Rivera GK, Crist WM, Pui CH: Individualized dosages of chemotherapy as a strategy to improve response for acute lymphocytic leukemia. Semin Hematol 28(3/4): 15–21, 1991.

    CAS  PubMed  Google Scholar 

  70. McLeod HL, Miller DR, Evans WE: Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341(8853): 1151, 1993.

    Article  CAS  PubMed  Google Scholar 

  71. Lennard L: Mechanisms of thiopurine resistance in childhood leukemia. International Journal of Pediatric Hematology/Oncology 4(6): 553–564, 1997.

    Google Scholar 

  72. Lennard L, Davies HA, Lilleyman JS: Is 6-thioguanine more appropriate than 6-mercaptopurine for children with acute lymphoblastic leukaemia? British Journal of Cancer 68(1): 186–190, 1993.

    CAS  PubMed  Google Scholar 

  73. Adamson PC, Poplack DG, Balis FM: The cytotoxicity of thioguanine vs mercaptopurine in acute lymphoblastic leukemia. Leukemia Research 18(11): 805–810, 1994.

    Article  CAS  PubMed  Google Scholar 

  74. Evans WE, Relling MV: Mercaptopurine vs thioguanine for the treatment of acute lymphoblastic leukemia. Leukemia Research 18(11): 811–814, 1994.

    Article  CAS  PubMed  Google Scholar 

  75. Maybaum J, Hink LA, Roethel WM, Mandel HG: Dissimilar actions of 6-mercaptopurine and 6-thioguanine in chinese hamster ovary cells. Biochemical Pharmacology 34(20): 3677–3682, 1985.

    Article  CAS  PubMed  Google Scholar 

  76. Lancaster DL, Lennard L, Rowland K, Vora AJ, Lilleyman JS: Thioguanine versus mercaptopurine for therapy of childhood lymphoblastic leukaemia: A comparison of haematological toxicity and drug metabolite concentrations. British Journal of Haematology 102(2): 439–443, 1998.

    Article  CAS  PubMed  Google Scholar 

  77. Vora AJ, Mitchell C, Kinsey S, Richards S, Eden T, Lilleyman J, Lennard L: Thioguanine-related veno-occlusive disease (VOD) of the liver in children with acute lymphoblastic leukaemia (ALL): Report from united kingdom medical research council (UK MRC) trial ALL97. Blood 100(11): 126, 2002.

    Google Scholar 

  78. Stork LC, Sather H, Hutchinson RJ, Broxson EH, Matloub Y, Yanofsky R, Masterson M, Sorrell A, Mei L, Wells L, Blake M, Gaynon PS: Comparison of mercaptopurine (MP) with thioguanine (TG) and IT methotrexate (ITM) with IT “triples” (ITT) in children with SR-ALL: Results of CCG-1952. Blood 100(11): 585, 2002.

    Google Scholar 

  79. Woodson LC, Ames MM, Selassie CD, et al.: Thiopurine methyltransferase. aromatic thiol substrates and inhibition by benzoic acid derivatives. Molecular Pharmacology 24(3): 471–478, 1983.

    CAS  PubMed  Google Scholar 

  80. Ames MM, Selassie CD, Woodson LC, Van Loon JA, Hansch C, Weinshilboum RM: Thiopurine methyltransferase: structure-activity relationships for benzoic acid inhibitors and thiophenol substrates. J Med Chem 29(3): 354–358, 1986.

    Article  CAS  PubMed  Google Scholar 

  81. Szumlanski CL, Weinshilboum RM: Sulphasalazine inhibition of thiopurine methyltransferase: Possible mechanism for interaction with 6-mercaptopurine and azathioprine. British Journal of Clinical Pharmacology 39(4): 456–459, 1995.

    CAS  PubMed  Google Scholar 

  82. Lewis LD, Benin A, Szumlanski CL, Otterness DM, Lennard L, Weinshilboum RM, Nierenberg DW: Olsalazine and 6-mercaptopurine-related bone marrow suppression: A possible drug-drug interaction. Clinical Pharmacology & Therapeutics 62(4): 464–475, 1997.

    Article  CAS  Google Scholar 

  83. Lowry PW, Szumlanski CL, Weinshilboum RM, Sandborn WJ: Balsalazide and azathiprine or 6-mercaptopurine: Evidence for a potentially serious drug interaction. Gastroenterology 116(6): 1505–1506, 1999.

    Article  CAS  PubMed  Google Scholar 

  84. Lowry PW, Franklin CL, Weaver AL, Pike MG, Mays DC, Tremaine WJ, Lipsky JJ, Sandborn WJ: Measurement of thiopurine methyltransferase activity and azathioprine metabolites in patients with inflammatory bowel disease. Gut 49(5): 665–670, 2001.

    CAS  PubMed  Google Scholar 

  85. Lowry PW, Franklin CL, Weaver AL, Szumlanski CL, Mays DC, Loftus EV, Tremaine WJ, Lipsky JJ, Weinshilboum RM, Sandborn WJ: Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut 49(5): 656–664, 2001.

    CAS  PubMed  Google Scholar 

  86. Relling MV, Yanishevski Y, Nemec I, Evans WE, Boyett JM, Behm FG, Pui C-H: Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12(3): 346–352, 1998.

    Article  CAS  PubMed  Google Scholar 

  87. Relling MV, Rubnitz JE, Rivera GK, Boyett JM, Hancock ML, Felix CA, Kun LE, Walter AW, Evans WE, Pui C-H: High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 354(9172): 34–39, 1999.

    Article  CAS  PubMed  Google Scholar 

  88. Stanulla M, Loning L, Welte K, Schrappe M: Secondary brain tumours in children with ALL. Lancet 354(9184): 1126–1127, 1999.

    Article  CAS  PubMed  Google Scholar 

  89. Jenkinson H, Hawkins M, Stanulla M, Loning L, Welte K, Schrappe M, Key MF, Cekic O: Secondary brain tumours in children with ALL. Lancet 354(9184): 1126–1127, 1999.

    Article  CAS  PubMed  Google Scholar 

  90. Thomsen JB, Schroder H, Kristinsson J, Madsen B, Szumlanski C, Weinshilboum R, Andersen JB, Schmiegelow K: Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells— Relation to Thiopurine Metabolism. Cancer 86(6): 1080–1086, 1999.

    Article  CAS  Google Scholar 

  91. Weinshilboum RM, Raymond FA, Pazmino PA: Human erythrocyte thiopurine methyltransferase: radiochemical microassay and biochemical properties. Clinica Chimica Acta 85(3): 323–333, 1978.

    Article  CAS  Google Scholar 

  92. Kroplin T, Weyer N, Gutsche S, Iven H: Thiopurine S-methyltransferase activity in human erythrocytes: A new HPLC method using 6-thioguanine as substrate. Eur J Clin Pharmacol 54(3): 265–271, 1998.

    CAS  PubMed  Google Scholar 

  93. Yates CR, Krynetski EY, Loennechen T, Fessing MY, Tai HL, Pui CH, Relling MV, Evans WE: Molecular diagnosis of thiopurine S-methyltransferase deficiency: Genetic basis for azathioprine and mercaptopurine intolerance. Annals of Internal Medicine 126(8): 608–614, 1997.

    CAS  PubMed  Google Scholar 

  94. Hall AG, Hamilton P, Minto L, Coulthard SA: The use of denaturing high-pressure liquid chromatography for the detection of mutations in thiopurine methyltransferase. J Biochem Biophys Methods 47(1–2): 65–71, 2001.

    CAS  PubMed  Google Scholar 

  95. Schaeffeler E, Lang T, Zanger UM, Eichelbaum M, Schwab M: High-throughput genotyping of thiopurine S-methyltransferase by denaturing HPLC. Clinical Chemistry 47(3): 548–555, 2001.

    CAS  PubMed  Google Scholar 

  96. Lindqvist M, Almer S, Peterson C, Soderkvist P: Real-time RT-PCR methodology for quantification of thiopurine methyltransferase gene expression. European Journal of Clinical Pharmacology 59(3): 207–211, 2003.

    Article  CAS  PubMed  Google Scholar 

  97. Yi L, Tan PL, Hen CK, Huang LQ, Li FY, Quah TC, Yeoh EJ: Arrayed primer extension (APEX): A solid-phase four-color DNA minisequencing to detect the mutations on the human beta-globin and thiopurine methyltransferase (TPMT) genes. Blood 100(11): 896, 2002.

    Google Scholar 

  98. McDonald OG, Krynetski EY, Evans WE: Molecular haplotyping of genomic DNA for multiple single-nucleotide polymorphisms located kilobases apart using long-range polymerase chain reaction and intramolecular ligation. Pharmacogenetics 12(2): 93–99, 2002.

    Article  CAS  PubMed  Google Scholar 

  99. Haglund S, Lindqvist M, Almer S, Peterson C, Taipalensuu J: Pyrosequencing of TPMT alleles in a general swedish population and in patients with inflammatory bowel disease. Clinical Chemistry (in press) 2003.

  100. Qasim A, Seery J, Buckley M, Morain CO: TPMT in the treatment of inflammatory bowel disease with azathioprine. Gut 52(5): 767, 2003.

    Article  CAS  PubMed  Google Scholar 

  101. Clunie GP, Lennard L: Relevance of thiopurine methyltransferase status in rheumatology patients receiving azathioprine. Rheumatology (Oxford) 42: 1–6, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Coulthard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulthard, S., Hogarth, L. The thiopurines: An update. Invest New Drugs 23, 523–532 (2005). https://doi.org/10.1007/s10637-005-4020-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-005-4020-8

Key words

Navigation