Skip to main content

Advertisement

Log in

Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

An Erratum to this article was published on 11 April 2013

Summary

We explored whether barasertib (AZD1152), a selective Aurora B kinase inhibitor, is a substrate for P-glycoprotein (Pgp, MDR1), breast cancer resistance protein (BCRP), and multidrug resistance protein 2 (MRP2) in vitro. Cell survival, drug transport, and competition experiments with barasertib pro-drug and the more active form of the drug (barasertib-hQPA) were performed using MDCKII (wild type, MDR1, BCRP, and MRP2) and LLCPK (wild type and MDR1) cells and monolayers, and Sf9-BCRP membrane vesicles. Moreover we tested whether P-gp and BCRP affect the oral pharmacokinetics, tissue distribution, and myelotoxicity of barasertib in vivo using Bcrp1-/-/Mdr1a/1b -/- (triple knockout) and wild type mice. In cell survival experiments expression of BCRP and MDR1 resulted in significant resistance to barasertib. In transwell experiments, barasertib-hQPA was transported by BCRP and MDR1 efficiently. In Sf9-BCRP membrane vesicles, both barasertib and barasertib-hQPA significantly inhibited the BCRP-mediated transport of methotrexate. In contrast, no active transport of barasertib by MRP2 was observed, and overexpression of MRP2 did not affect cytotoxicity of barasertib. In vivo, systemic exposure as well as bioavailability, brain penetration, kidney and liver distribution and myelotoxicity of barasertib-hQPA were statistically significantly increased in Bcrp1-/-/Mdr1a/1b-/- compared with wild type mice (p<0.001). Barasertib is transported efficiently by P-gp and BCRP/Bcrp1 in vitro. In vivo, genetic deletion of P-gp and BCRP in mice significantly affected pharmacokinetics, tissue distribution and myelotoxicity of barasertib-hQPA. Possible clinical consequences for the observed affinity of barasertib for P-gp and BCRP need to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wilkinson RW, Odedra R, Heaton SP et al (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 3:3682–3688

    Article  Google Scholar 

  2. Carmena M, Earnshaw WC (2003) The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842–854

    Article  CAS  Google Scholar 

  3. Kimura M, Matsuda Y, Yoshioka T et al (1998) Identification and characterization of STK12/Aik2: a human gene related to aurora of Drosophila and yeast IPL1. Cytogenet Cell Genet 82:147–152

    Article  CAS  Google Scholar 

  4. Marumoto T, Zhang D, Saya H (2005) Aurora-A - a guardian of poles. Nat Rev Cancer 5:42–50

    Article  CAS  Google Scholar 

  5. Tang CJ, Lin CY, Tang TK (2006) Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev Biol 290:398–410

    Article  CAS  Google Scholar 

  6. Bischoff JR, Anderson L, Zhu Y et al (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17:3052–3065

    Article  CAS  Google Scholar 

  7. Nair JS, de Stanchina E, Schwartz GK (2009) The topoisomerase I poison CPT-11 enhances the effect of the aurora B kinase inhibitor AZD1152 both in vitro and in vivo. Clin Cancer Res 15:2022–2030

    Article  CAS  Google Scholar 

  8. Lee EC, Frolov A, Li R et al (2006) Targeting Aurora kinases for the treatment of prostate cancer. Cancer Res 66:4996–5002

    Article  CAS  Google Scholar 

  9. Chieffi P, Cozzolino L, Kisslinger A et al (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66:326–333

    Article  CAS  Google Scholar 

  10. Li D, Zhu J, Firozi PF et al (2003) Overexpression of oncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 9:991–997

    CAS  PubMed  Google Scholar 

  11. Gully CP, Zhang F, Chen J et al (2010) Antineoplastic effects of an Aurora B kinase inhibitor in breast cancer. Mol Cancer 9:42

    Article  Google Scholar 

  12. Tanaka T, Kimura M, Matsunaga K et al (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–2044

    CAS  PubMed  Google Scholar 

  13. Smith SL, Bowers NL, Betticher DC et al (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93:719–729

    Article  CAS  Google Scholar 

  14. Sorrentino R, Libertini S, Pallante PL et al (2005) Aurora B overexpression associates with the thyroid carcinoma undifferentiated phenotype and is required for thyroid carcinoma cell proliferation. J Clin Endocrinol Metab 90:928–935

    Article  CAS  Google Scholar 

  15. Oke A, Pearce D, Wilkinson RW et al (2009) AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells in vitro and in vivo. Cancer Res 69:4150–4158

    Article  CAS  Google Scholar 

  16. Moore AS, Blagg J, Linardopoulos S et al (2010) Aurora kinase inhibitors: novel small molecules with promising activity in acute myeloid and Philadelphia-positive leukemias. Leukemia 24:671–678

    Article  CAS  Google Scholar 

  17. Evans RP, Naber C, Steffler T et al (2008) The selective Aurora B kinase inhibitor AZD1152 is a potential new treatment for multiple myeloma. Br J Haematol 140:295–302

    Article  CAS  Google Scholar 

  18. Ikezoe T, Takeuchi T, Yang J et al (2009) Analysis of Aurora B kinase in non-Hodgkin lymphoma. Lab Invest 89:1364–1373

    Article  CAS  Google Scholar 

  19. Reiter R, Gais P, Jütting U et al (2006) Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res 12:5136–5141

    Article  CAS  Google Scholar 

  20. Lin ZZ, Jeng YM, Hu FC et al (2010) Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer 10:461

    Article  Google Scholar 

  21. Boss DS, Witteveen PO, van der Sar J et al (2011) Clinical evaluation of AZD1152, an i.v. inhibitor of Aurora B kinase, in patients with solid malignant tumors. Ann Oncol 22:431–437

    Article  CAS  Google Scholar 

  22. Zhu X, Ma Y, Liu D (2010) Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights. J Hematol Oncol 3:17

    Article  Google Scholar 

  23. Marchetti S, Mazzanti R, Beijnen JH et al (2007) Clinical Relevance: drug-drug interaction, pharmacokinetics, pharmacodynamic, and toxicity. Wiley & Sons, Drug Transporters, pp 747–880

    Google Scholar 

  24. Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592

    Article  CAS  Google Scholar 

  25. Kruitzer CM, Beijnen JH, Sshellens JH (2002) Improvement of oral drug treatment by temporary inhibition of drug transporters and/or cytochrome P450 in the gastrointestinal tract and liver: an overview. Oncologist 7:516–530

    Article  Google Scholar 

  26. Breedveld P, Beijnen JH, Schellens JH (2006) Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci 27:17–24

    Article  CAS  Google Scholar 

  27. Breedveld P, Pluim D, Cipriani G et al (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65:2577–2582

    Article  CAS  Google Scholar 

  28. Marchetti S, Mazzanti R, Beijnen JH et al (2007) Concise review: clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist 12:927–941

    Article  Google Scholar 

  29. Marchetti S, Oostendorp RL, Pluim D et al (2007) In vitro transport of gimatecan (7-t-butoxyiminomethylcamptothecin) by breast cancer resistance protein, P-glycoprotein, and multidrug resistance protein 2. Mol Cancer Ther 6:3307–3313

    Article  CAS  Google Scholar 

  30. de Bruin M, Miyake K, Litman K et al (1999) Reversal of resistance by GF120918 in cell lines expressing the half-transporter, MXR. Cancer Lett 146:117–126

    Article  Google Scholar 

  31. Shepard RL, Cao J, Starling JJ et al (2003) Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int J Cancer 103:121–125

    Article  CAS  Google Scholar 

  32. Breedveld P, Zelcer N, Pluim D et al (2004) Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: potential role for breast cancer resistance protein in clinical drug-drug interactions. Cancer Res 64:5804–5811

    Article  CAS  Google Scholar 

  33. van Herwaarden AE, Jonker JW, Wagenaar E et al (2003) The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 63:6447–6452

    PubMed  Google Scholar 

  34. Schinkel AH, Smit JJ, van Tellingen O et al (1994) Disruption of the Mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood–brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    Article  CAS  Google Scholar 

  35. Pluim D, Beijnen JH, Schellens JH et al (2009) Simultaneous determination of AZD1152 (prodrug) and AZD1152-hydroxyquinazoline pyrazol anilide by reversed phase liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 877:3549–3555

    Article  CAS  Google Scholar 

  36. Maliepaard M, van Gastelen MA, de Jong LA et al (1999) Overexpression of the BCRP/MXR/ABCP Gene in a Topotecan-selected Ovarian Tumor Cell Line. Cancer Res 59:4559–4563

    CAS  PubMed  Google Scholar 

  37. Brangi M, Litman T, Ciotti M et al (1999) Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 59:4559–4563

    Google Scholar 

  38. Schinkel AH, Wagenaar E, van Deemter L et al (1995) Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest 96:1698–1705

    Article  CAS  Google Scholar 

  39. Jonker JW, Smit JW, Brinkhuis RF et al (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656

    Article  CAS  Google Scholar 

  40. Schinkel AH, Wagenaar E, Mol CA et al (1996) P-glycoprotein in the blood–brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 97:2517–2524

    Article  CAS  Google Scholar 

  41. Kim M, Turnquist H, Jackson J et al (2002) The Multidrug Resistance Transporter ABCG2 (Breast Cancer Resistance Protein 1) Effluxes Hoechst 33342 and Is Overexpressed in Hematopoietic Stem Cells. Clin Canc Res 8:22–28

    CAS  Google Scholar 

  42. Svirnovski AI, Shman TV, Serhiyenka TF et al (2009) ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells. Hematology 14:204–212

    Article  CAS  Google Scholar 

  43. Schinkel AH, Mayer U, Wagenaar E et al (1997) Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 94:4028–4033

    Article  CAS  Google Scholar 

  44. Ekins S, Ecker GF, Chiba P et al (2007) Future directions for drug transporter modeling. Xenobiotica 37:1152–1170

    Article  CAS  Google Scholar 

  45. International Transporter Consortium, Giacomini KM, Huang SM et al (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  Google Scholar 

  46. Kawasaki A, Mastumura I, Miyagawa J (2001) Downregulation of an AIM-1 kinase couples with megakaryocytic polyploidization of human hematopoietic cells. J Cell Biol 152:275–287

    Article  CAS  Google Scholar 

  47. Dennis M, Davies M, Oliver S et al (2012) Phase I study of the Aurora B kinase inhibitor barasertib (AZD1152) to assess the pharmacokinetics, metabolism and excretion in patients with acute myeloid leukemia. Cancer Chemother Pharmacol 70:461–469

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors disclose no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Marchetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchetti, S., Pluim, D., van Eijndhoven, M. et al. Effect of the drug transporters ABCG2, Abcg2, ABCB1 and ABCC2 on the disposition, brain accumulation and myelotoxicity of the aurora kinase B inhibitor barasertib and its more active form barasertib-hydroxy-QPA. Invest New Drugs 31, 1125–1135 (2013). https://doi.org/10.1007/s10637-013-9923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-013-9923-1

Keywords

Navigation