Skip to main content
Log in

Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The seminal paper on the liver physiologically-based pharmacokinetic (PBPK) model by Rowland et al. (J Pharmacokinet Biopharm 1:123–136, 1973) that described the influence of blood flow, intrinsic clearance, and binding on hepatic clearance had inspired further development of PBPK modeling of the liver, kidney and intestine as well as whole body. Shortly thereafter, a series of papers from Pang and Rowland compared the well-stirred and parallel-tube liver models and sparked further development on clearance concepts in the liver, including those described by the dispersion model. From 2005 onwards, several seminal papers by Rodgers and Rowland, in their recognition of the binding of molecules to tissue acidic and neutral phospholipids, improved the methodology in providing estimates of the tissue-to-plasma coefficient and rendering easy calculation of these hard-to-get constants. The improvement has strongly consolidated the basic premise on PBPK modeling and simulations and these basics have allowed scientists to focus on other important variables: membrane barriers, and transporter and enzyme and their heterogeneities that further impact drug disposition. In particular, the PBPK models have delved into sequential metabolism and futile cycling to illustrate how transporters and enzymes could affect the metabolism of drugs and metabolites. PBPK models that are especially pertinent to metabolite kinetics are being utilized in drug studies and risk assessment. These types of PBPK modeling reveal differences in kinetics between the formed vs. preformed metabolite, showing special considerations for membrane barriers, and the influence of competing pathways and competing organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rowland M, Benet LZ, Graham GG (1973) Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm 1:123–136

    Article  CAS  PubMed  Google Scholar 

  2. Rodgers T, Rowland M (2007) Mechanistic approaches to volume of distribution predictions: understanding the processes. Pharm Res 24:918–933

    Article  CAS  PubMed  Google Scholar 

  3. Rodgers T, Leahy D, Rowland M (2005) Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci 94:1259–1276

    Article  CAS  PubMed  Google Scholar 

  4. Rodgers T, Rowland M (2006) Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci 95:1238–1257

    Article  CAS  PubMed  Google Scholar 

  5. Dedrick RL, Forrester DD, Cannon JN, el-Dareer SM, Mellett LB (1973) Pharmacokinetics of 1-beta-d-arabinofuranosylcytosine (ARA-C) deamination in several species. Biochem Pharmacol 22:2405–2417

    Article  CAS  PubMed  Google Scholar 

  6. Boxenbaum H, Ronfeld R (1983) Interspecies pharmacokinetic scaling and the Dedrick plots. Am J Physiol 245:R768–R775

    CAS  PubMed  Google Scholar 

  7. Rowland M (1985) Physiologic pharmacokinetic models and interanimal species scaling. Pharmacol Ther 29:49–68

    Article  CAS  PubMed  Google Scholar 

  8. Kawai R, Mathew D, Tanaka C, Rowland M (1998) Physiologically based pharmacokinetics of cyclosporine A: extension to tissue distribution kinetics in rats and scale-up to human. J Pharmacol Exp Ther 287:457–468

    CAS  PubMed  Google Scholar 

  9. Nestorov I (2003) Whole body pharmacokinetic models. Clin Pharmacokinet 42:883–908

    Article  CAS  PubMed  Google Scholar 

  10. Nestorov I, Aarons L, Rowland M (1998) Quantitative structure-pharmacokinetics relationships: II. A mechanistically based model to evaluate the relationship between tissue distribution parameters and compound lipophilicity. J Pharmacokinet Biopharm 26:521–545

    CAS  PubMed  Google Scholar 

  11. Rowland M, Balant L, Peck C (2004) Physiologically based pharmacokinetics in drug development, regulatory science: a workshop report (Georgetown University, Washington, DC, May 29–30,2002. AAPS PharmSci 6:E6

    Article  PubMed  Google Scholar 

  12. Germani M, Crivori P, Rocchetti M, Burton PS, Wilson AG, Smith ME, Poggesi I (2007) Evaluation of a basic physiologically based pharmacokinetic model for simulating the first-time-in-animal study. Eur J Pharm Sci 31:190–201

    Article  CAS  PubMed  Google Scholar 

  13. Lavé T, Parrott N, Grimm HP, Fleury A, Reddy M (2007) Challenges and opportunities with modelling and simulation in drug discovery and drug development. Xenobiotica 37:1295–1310

    Article  PubMed  Google Scholar 

  14. Chiu WA, Barton HA, DeWoskin RS, Schlosser P, Thompson CM, Sonawane B, Lipscomb JC, Krishnan K (2007) Evaluation of physiologically based pharmacokinetic models for use in risk assessment. J Appl Toxicol 27:218–237

    Article  CAS  PubMed  Google Scholar 

  15. Clewell RA, Clewell HJ 3rd (2008) Development and specification of physiologically based pharmacokinetic models for use in risk assessment. Regul Toxicol Pharmacol 50:129–143

    Article  CAS  PubMed  Google Scholar 

  16. Dobrev ID, Andersen ME, Yang RS (2002) In silico toxicology: simulating interaction thresholds for human exposure to mixtures of trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Environ Health Perspect 110:1031–1039

    Article  CAS  PubMed  Google Scholar 

  17. Gargas ML, Sweeney LM, Himmelstein MW, Pottenger LH, Bus JS, Holder JW (2008) Physiologically based pharmacokinetic modeling of chloroethane disposition in mice, rats, and women. Toxicol Sci 104:54–66

    Article  CAS  PubMed  Google Scholar 

  18. Gargas ML, Tyler TR, Sweeney LM, Corley RA, Weitz KK, Mast TJ, Paustenbach DJ, Hays SM (2000) A toxicokinetic study of inhaled ethylene glycol ethyl ether acetate and validation of a physiologically based pharmacokinetic model for rat and human. Toxicol Appl Pharmacol 165:63–73

    Article  CAS  PubMed  Google Scholar 

  19. Gargas ML, Tyler TR, Sweeney LM, Corley RA, Weitz KK, Mast TJ, Paustenbach DJ, Hays SM (2000) A toxicokinetic study of inhaled ethylene glycol monomethyl ether (2-ME) and validation of a physiologically based pharmacokinetic model for the pregnant rat and human. Toxicol Appl Pharmacol 165:53–62

    Article  CAS  PubMed  Google Scholar 

  20. Sweeney LM, Andersen ME, Gargas ML (2004) Ethyl acrylate risk assessment with a hybrid computational fluid dynamics and physiologically based nasal dosimetry model. Toxicol Sci 79:394–403

    Article  CAS  PubMed  Google Scholar 

  21. Edginton AN, Schmitt W, Voith B, Willmann S (2006) A mechanistic approach for the scaling of clearance in children. Clin Pharmacokinet 45:683–704

    Article  CAS  PubMed  Google Scholar 

  22. Johnson TN, Rostami-Hodjegan A, Tucker GT (2006) Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet 45:931–956

    Article  CAS  PubMed  Google Scholar 

  23. Bjorkman S, Wada DR, Berling BM, Benoni G (2001) Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J Pharm Sci 90:1226–1241

    Article  CAS  PubMed  Google Scholar 

  24. Harrison LI, Gibaldi M (1977) Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans. J Pharm Sci 66:1679–1683

    Article  CAS  PubMed  Google Scholar 

  25. Tod M, Lagneau F, Jullien V, Mimoz O (2008) A physiological model to evaluate drug kinetics in patients with hemorrhagic shock followed by fluid resuscitation. Application to amoxicillin-clavulanate. Pharm Res 25:1431–1439

    Article  CAS  PubMed  Google Scholar 

  26. Tsuji A, Nishide K, Minami H, Nakashima E, Terasaki T, Yamana T (1985) Physiologically based pharmacokinetic model for cefazolin in rabbits and its preliminary extrapolation to man. Drug Metab Dispos 13:729–739

    CAS  PubMed  Google Scholar 

  27. Sugita O, Sawada Y, Sugiyama Y, Iga T, Hanano M (1982) Physiologically based pharmacokinetics of drug–drug interaction: a study of tolbutamide–sulfonamide interaction in rats. J Pharmacokinet Biopharm 10:297–316

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe T, Kusuhara H, Maeda K, Shitara Y, Sugiyama Y (2009) Physiologically based pharmacokinetic modeling to predict transporter-mediated clearance and distribution of pravastatin in humans. J Pharmacol Exp Ther 328:652–662

    Article  CAS  PubMed  Google Scholar 

  29. Inoue S, Howgate EM, Rowland-Yeo K, Shimada T, Yamazaki H, Tucker GT, Rostami-Hodjegan A (2006) Prediction of in vivo drug clearance from in vitro data. II: potential inter-ethnic differences. Xenobiotica 36:499–513

    Article  CAS  PubMed  Google Scholar 

  30. Baillie TA, Cayen MN, Fouda H, Gerson RJ, Green JD, Grossman SJ, Klunk LJ, LeBlanc B, Perkins DG, Shipley LA (2002) Drug metabolites in safety testing. Toxicol Appl Pharmacol 182:188–196

    Article  CAS  PubMed  Google Scholar 

  31. Atrakchi AH (2009) Interpretation and considerations on the safety evaluation of human drug metabolites. Chem Res Toxicol 22:1217–1220

    Article  CAS  PubMed  Google Scholar 

  32. Shitara Y, Hirano M, Sato H, Sugiyama Y (2004) Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug–drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther 311:228–236

    Article  CAS  PubMed  Google Scholar 

  33. Isoherranen N, Hachad H, Yeung CK, Levy RH (2009) Qualitative analysis of the role of metabolites in inhibitory drug–drug interactions: literature evaluation based on the metabolism and transport drug interaction database. Chem Res Toxicol 22:294–298

    Article  CAS  PubMed  Google Scholar 

  34. Baillie TA (2009) Approaches to the assessment of stable and chemically reactive drug metabolites in early clinical trials. Chem Res Toxicol 22:263–266

    Article  CAS  PubMed  Google Scholar 

  35. Pang KS (2009) Safety testing of metabolites: expectations and outcomes. Chem Biol Interact 179:45–59

    Article  CAS  PubMed  Google Scholar 

  36. Pang KS, Morris ME, Sun H (2008) Formed and preformed metabolites: facts and comparisons. J Pharm Pharmacol 60:1247–1275

    Article  CAS  PubMed  Google Scholar 

  37. Pang KS, Gillette JR (1979) Sequential first-pass elimination of a metabolite derived from a precursor. J Pharmacokinet Biopharm 7:275–290

    Article  CAS  PubMed  Google Scholar 

  38. Pang KS (1985) A review of metabolite kinetics. J Pharmacokinet Biopharm 13:633–662

    Article  CAS  PubMed  Google Scholar 

  39. Pang KS, Kwan KC (1983) A commentary: methods and assumptions in the kinetic estimation of metabolite formation. Drug Metab Dispos 11:79–84

    CAS  PubMed  Google Scholar 

  40. Sun H, Pang KS (2010) Physiological modeling to understand the impact of enzymes and transporters on drug and metabolite data and bioavailability estimates. Pharm Res 27:1237–1254

    Article  CAS  PubMed  Google Scholar 

  41. de Lannoy IA, Pang KS (1986) Presence of a diffusional barrier on metabolite kinetics: enalaprilat as a generated versus preformed metabolite. Drug Metab Dispos 14:513–520

    PubMed  Google Scholar 

  42. de Lannoy IA, Pang KS (1987) Effect of diffusional barriers on drug and metabolite kinetics. Drug Metab Dispos 15:51–58

    PubMed  Google Scholar 

  43. Pang KS, Cherry WF, Terrell JA, Ulm EH (1984) Disposition of enalapril and its diacid metabolite, enalaprilat, in a perfused rat liver preparation. Presence of a diffusional barrier for enalaprilat into hepatocytes. Drug Metab Dispos 12:309–313

    CAS  PubMed  Google Scholar 

  44. Tirona RG, Pang KS (1996) Sequestered endoplasmic reticulum space for sequential metabolism of salicylamide. Coupling of hydroxylation and glucuronidation. Drug Metab Dispos 24:821–833

    CAS  PubMed  Google Scholar 

  45. Tan E, Lu T, Pang KS (2001) Futile cycling of estrone sulfate and estrone in the recirculating perfused rat liver preparation. J Pharmacol Exp Ther 297:423–436

    CAS  PubMed  Google Scholar 

  46. Schwab AJ, Tao L, Yoshimura T, Simard A, Barker F, Pang KS (2001) Hepatic uptake and metabolism of benzoate: a multiple indicator dilution, perfused rat liver study. Am J Physiol Gastrointest Liver Physiol 280:G1124–G1136

    CAS  PubMed  Google Scholar 

  47. Chen J, Pang KS (1997) Effect of flow on first-pass metabolism of drugs: single pass studies on 4-methylumbelliferone conjugation in the serially perfused rat intestine and liver preparations. J Pharmacol Exp Ther 280:24–31

    CAS  PubMed  Google Scholar 

  48. St-Pierre MV, Pang KS (1993) Kinetics of sequential metabolism. I. Formation and metabolism of oxazepam from nordiazepam and temazepam in the perfused murine liver. J Pharmacol Exp Ther 265:1429–1436

    CAS  PubMed  Google Scholar 

  49. Sun H, Pang KS (2009) Disparity in intestine disposition between formed and preformed metabolites and implications: a theoretical study. Drug Metab Dispos 37:187–202

    Article  CAS  PubMed  Google Scholar 

  50. Xu X, Pang KS (1989) Hepatic modeling of metabolite kinetics in sequential and parallel pathways: salicylamide and gentisamide metabolism in perfused rat liver. J Pharmacokinet Biopharm 17:645–671

    Article  CAS  PubMed  Google Scholar 

  51. Cong D, Doherty M, Pang KS (2000) A new physiologically based, segregated-flow model to explain route-dependent intestinal metabolism. Drug Metab Dispos 28:224–235

    CAS  PubMed  Google Scholar 

  52. Doherty MM, Pang KS (2000) Route-dependent metabolism of morphine in the vascularly perfused rat small intestine preparation. Pharm Res 17:291–298

    Article  CAS  PubMed  Google Scholar 

  53. Pang KS (2003) Modeling of intestinal drug absorption: roles of transporters and metabolic enzymes (for the Gillette Review Series). Drug Metab Dispos 31:1507–1519

    Article  CAS  PubMed  Google Scholar 

  54. Yang J, Jamei M, Yeo KR, Tucker GT, Rostami-Hodjegan A (2007) Prediction of intestinal first-pass drug metabolism. Curr Drug Metab 8:676–684

    Article  CAS  PubMed  Google Scholar 

  55. Tam D, Tirona RG, Pang KS (2003) Segmental intestinal transporters and metabolic enzymes on intestinal drug absorption. Drug Metab Dispos 31:373–383

    Article  CAS  PubMed  Google Scholar 

  56. Liu L, Pang KS (2006) An integrated approach to model hepatic drug clearance. Eur J Pharm Sci 29:215–230

    Article  CAS  PubMed  Google Scholar 

  57. Abu-Zahra TN, Pang KS (2000) Effect of zonal transport and metabolism on hepatic removal: enalapril hydrolysis in zonal, isolated rat hepatocytes in vitro and correlation with perfusion data. Drug Metab Dispos 28:807–813

    CAS  PubMed  Google Scholar 

  58. Andersen ME, Birnbaum LS, Barton HA, Eklund CR (1997) Regional hepatic CYP1A1 and CYP1A2 induction with 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin evaluated with a multicompartment geometric model of hepatic zonation. Toxicol Appl Pharmacol 144:145–155

    Article  CAS  PubMed  Google Scholar 

  59. Pang KS, Xu X, Morris ME, Yuen V (1987) Kinetic modeling of conjugations in liver. Fed Proc 46:2439–2441

    CAS  Google Scholar 

  60. Baillie TA, Halpin RA, Matuszewski BK, Geer LA, Chavez-Eng CM, Dean D, Braun M, Doss G, Jones A, Marks T, Melillo D, Vyas KP (2001) Mechanistic studies on the reversible metabolism of rofecoxib to 5-hydroxyrofecoxib in the rat: evidence for transient ring opening of a substituted 2-furanone derivative using stable isotope-labeling techniques. Drug Metab Dispos 29:1614–1628

    CAS  PubMed  Google Scholar 

  61. Meffin PJ, Zilm DM, Veenendaal JR (1983) Reduced clofibric acid clearance in renal dysfunction is due to a futile cycle. J Pharmacol Exp Ther 227:732–738

    CAS  PubMed  Google Scholar 

  62. Grubb NG, Rudy DW, Brater DC, Hall SD (1999) Stereoselective pharmacokinetics of ketoprofen and ketoprofen glucuronide in end-stage renal disease: evidence for a ‘futile cycle’ of elimination. Br J Clin Pharmacol 48:494–500

    Article  CAS  PubMed  Google Scholar 

  63. Hansel SB, Morris ME (1996) Hepatic conjugation/deconjugation cycling pathways. Computer simulations examining the effect of Michaelis–Menten parameters, enzyme distribution patterns, and a diffusional barrier on metabolite disposition. J Pharmacokinet Biopharm 24:219–243

    Article  CAS  PubMed  Google Scholar 

  64. Kauffman FC, Whittaker M, Anundi I, Thurman RG (1991) Futile cycling of a sulfate conjugate by isolated hepatocytes. Mol Pharmacol 39:414–420

    CAS  PubMed  Google Scholar 

  65. Ratna S, Chiba M, Bandyopadhyay L, Pang KS (1993) Futile cycling between 4-methylumbelliferone and its conjugates in perfused rat liver. Hepatology 17:838–853

    Article  CAS  PubMed  Google Scholar 

  66. Xu X, Selick P, Pang KS (1993) Nonlinear protein binding and enzyme heterogeneity: effects on hepatic drug removal. J Pharmacokinet Biopharm 21:43–74

    Article  CAS  PubMed  Google Scholar 

  67. Sun H, Zeng YY, Pang KS (2010) Interplay of phase II enzymes and transporters in futile cycling: influence of multidrug resistance-associated protein 2-mediated excretion of estradiol 17β-d-glucuronide and its 3-sulfate metabolite on net sulfation in perfused TR- and Wistar rat liver preparations. Drug Metab Dispos 38:769–780

    Article  CAS  PubMed  Google Scholar 

  68. Chen S, Fan J, Pang KS (2010) Physiologically-based pharmacokinetic (PBPK) models for the description of sequential metabolism of codeine to morphine and morphine 3-glucuronide in man and rat, AAPS Annual Meeting, New Orleans, LA, 2010; Abstract #R6395

  69. Chiu WA, Okino MS, Evans MV (2009) Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach. Toxicol Appl Pharmacol 241:36–60

    Article  CAS  PubMed  Google Scholar 

  70. Gerlowski LE, Jain RK (1983) Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72:1103–1127

    Article  CAS  PubMed  Google Scholar 

  71. Verwei M, van Burgsteden JA, Krul CA, van de Sandt JJ, Freidig AP (2006) Prediction of in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicol Lett 165:79–87

    Article  CAS  PubMed  Google Scholar 

  72. Barton HA, Clewell HJ 3rd (2000) Evaluating noncancer effects of trichloroethylene: dosimetry, mode of action, and risk assessment. Environ Health Perspect 108(Suppl 2):323–334

    CAS  PubMed  Google Scholar 

  73. Sweeney LM, Kirman CR, Gargas ML, Dugard PH (2009) Contribution of trichloroacetic acid to liver tumors observed in perchloroethylene (perc)-exposed mice. Toxicology 260:77–83

    Article  CAS  PubMed  Google Scholar 

  74. Yang RS, el-Masri HA, Thomas RS, Constan AA, Tessari JD (1995) The application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures. Toxicol Lett 79:193–200

    Article  CAS  PubMed  Google Scholar 

  75. Andersen ME, Clewell HJ 3rd, Gargas ML, Smith FA, Reitz RH (1987) Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol Appl Pharmacol 87:185–205

    Article  CAS  PubMed  Google Scholar 

  76. Clewell HJ, Gentry PR, Gearhart JM, Allen BC, Andersen ME (2001) Comparison of cancer risk estimates for vinyl chloride using animal and human data with a PBPK model. Sci Total Environ 274:37–66

    Article  CAS  PubMed  Google Scholar 

  77. Reitz RH, Gargas ML, Andersen ME, Provan WM, Green TL (1996) Predicting cancer risk from vinyl chloride exposure with a physiologically based pharmacokinetic model. Toxicol Appl Pharmacol 137:253–267

    Article  CAS  PubMed  Google Scholar 

  78. Clewell HJ 3rd, Andersen ME, Wills RJ, Latriano L (1997) A physiologically based pharmacokinetic model for retinoic acid and its metabolites. J Am Acad Dermatol 36:S77–S85

    Article  PubMed  Google Scholar 

  79. Frederick CB, Bush ML, Lomax LG, Black KA, Finch L, Kimbell JS, Morgan KT, Subramaniam RP, Morris JB, Ultman JS (1998) Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol Appl Pharmacol 152:211–231

    Article  CAS  PubMed  Google Scholar 

  80. Frederick CB, Lomax LG, Black KA, Finch L, Scribner HE, Kimbell JS, Morgan KT, Subramaniam RP, Morris JB (2002) Use of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry comparisons of ester vapors. Toxicol Appl Pharmacol 183:23–40

    Article  CAS  PubMed  Google Scholar 

  81. Andersen ME, Sarangapani R, Frederick CB, Kimbell JS (1999) Dosimetric adjustment factors for methyl methacrylate derived from a steady-state analysis of a physiologically based clearance-extraction model. Inhal Toxicol 11:899–926

    Article  CAS  PubMed  Google Scholar 

  82. Sarangapani R, Teeguarden JG, Cruzan G, Clewell HJ, Andersen ME (2002) Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal Toxicol 14:789–834

    Article  CAS  PubMed  Google Scholar 

  83. Evans MV, Chiu WA, Okino MS, Caldwell JC (2009) Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly. Toxicol Appl Pharmacol 236:329–340

    Article  CAS  PubMed  Google Scholar 

  84. Sarangapani R, Teeguarden J, Andersen ME, Reitz RH, Plotzke KP (2003) Route-specific differences in distribution characteristics of octamethylcyclotetrasiloxane in rats: analysis using PBPK models. Toxicol Sci 71:41–52

    Article  CAS  PubMed  Google Scholar 

  85. Corley RA, Bartels MJ, Carney EW, Weitz KK, Soelberg JJ, Gies RA, Thrall KD (2005) Development of a physiologically based pharmacokinetic model for ethylene glycol and its metabolite, glycolic acid, in rats and humans. Toxicol Sci 85:476–490

    Article  CAS  PubMed  Google Scholar 

  86. McMullin TS, Hanneman WH, Cranmer BK, Tessari JD, Andersen ME (2007) Oral absorption and oxidative metabolism of atrazine in rats evaluated by physiological modeling approaches. Toxicology 240:1–14

    Article  CAS  PubMed  Google Scholar 

  87. Clewell RA, Kremer JJ, Williams CC, Campbell JL Jr, Andersen ME, Borghoff SJ (2008) Tissue exposures to free and glucuronidated monobutylyphthalate in the pregnant and fetal rat following exposure to di-n-butylphthalate: evaluation with a PBPK model. Toxicol Sci 103:241–259

    Article  CAS  PubMed  Google Scholar 

  88. Sweeney LM, Thrall KD, Poet TS, Corley RA, Weber TJ, Locey BJ, Clarkson J, Sager S, Gargas ML (2008) Physiologically based pharmacokinetic modeling of 1,4-dioxane in rats, mice, and humans. Toxicol Sci 101:32–50

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Quinney SK, Gorski JC, Jones DR, Hall SD (2009) Semiphysiologically based pharmacokinetic models for the inhibition of midazolam clearance by diltiazem and its major metabolite. Drug Metab Dispos 37:1587–1597

    Article  CAS  PubMed  Google Scholar 

  90. Rietjens IM, Punt A, Schilter B, Scholz G, Delatour T, van Bladeren PJ (2010) In silico methods for physiologically based biokinetic models describing bioactivation and detoxification of coumarin and estragole: implications for risk assessment. Mol Nutr Food Res 54:195–207

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Canadian Institutes for Heath Research, MOP89850. MRD was a recipient of a Biologic Therapeutics training grant from the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sandy Pang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, K.S., Durk, M.R. Physiologically-based pharmacokinetic modeling for absorption, transport, metabolism and excretion. J Pharmacokinet Pharmacodyn 37, 591–615 (2010). https://doi.org/10.1007/s10928-010-9185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-010-9185-x

Keywords

Navigation