Skip to main content
Log in

In Vitro and Pharmacophore-Based Discovery of Novel hPEPT1 Inhibitors

  • Rapid Communications
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

No Heading

Purpose.

The human proton-coupled small peptide carrier (hPEPT1) is a low-affinity, high-capacity transporter with broad substrate specificity. We have taken an iterative in vitro and in silico approach to the discovery of molecules with hPEPT1 affinity.

Methods.

A pharmacophore-based approach was taken to identifying hPEPT1 inhibitors. The well-characterized and relatively high affinity ligands Gly-Sar, bestatin, and enalapril were used to generate a common features (HIPHOP) pharmacophore. This consisted of two hydrophobic features, a hydrogen bond donor, acceptor, and a negative ionizable feature.

Results.

The pharmacophore was used to search the Comprehensive Medicinal Chemistry (CMC) database of more than 8000 drug-like molecules and retrieved 145 virtual hits mapping to the pharmacophore features. The highest scoring compounds within this set were selected and tested in a stably transfected CHO-hPepT1 cell model. The antidiabetic repaglinide and HMG CoA reductase inhibitor fluvastatin were found to inhibit hPEPT1 with sub-millimolar potency (IC50 178 ± 1.0 and 337 ± 4 μM, respectively). The pharmacophore was also able to identify known hPEPT1 substrates and inhibitors in further database mining of more than 500 commonly prescribed drugs.

Conclusions.

This study demonstrates the potential of combining computational and in vitro approaches to determine the affinity of compounds for hPEPT1 and, in turn, provides insights into key molecular interactions with this transporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. C. W. Andrews, L. Bennett, and L. X. Yu. Predicting human oral bioavailability of a compound: development of a novel quantitative structure-bioavailability relationship. Pharm. Res. 17:639–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. 2. D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45:2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. 3. E. Y. Zhang, M. A. Phelps, C. Cheng, S. Ekins, and P. W. Swaan. Modeling of active transport systems. Adv. Drug Del. Rev. 54:329–354 (2002).

    Article  CAS  Google Scholar 

  4. 4. S. Ekins and P. W. Swaan. Computational models for enzymes, transporters, channels and receptors relevant to absorption, distribution, metabolism, excretion and toxicology. Rev. Comp. Chem. 20:333–415 (2004).

    CAS  Google Scholar 

  5. 5. S. Gebauer, I. Knutter, B. Hartrodt, M. Brandsch, K. Neubert, and I. Thondorf. Three-dimensional quantitative structure-activity relationship analyses of peptide substrates of the mammalian H+/peptide cotransporter PEPT1. J. Med. Chem. 46:5725–5734 (2003).

    CAS  PubMed  Google Scholar 

  6. 6. N. J. Snyder, L. B. Tabas, D. M. Berry, D. C. Duckworth, D. O. Spry, and A. H. Dantzig. Structure-activity relationship of carbacephalosporins and cephalosporins: antibacterial activity and interaction with the intestinal proton-dependent dipeptide transport carrier of Caco-2 cells. Antimicrob. Agents Chemother. 41:1649–1657 (1997).

    CAS  PubMed  Google Scholar 

  7. 7. F. H. Leibach and V. Ganapathy. Peptide transporters in the intestine and the kidney. Annu. Rev. Nutr. 16:99–119 (1996).

    CAS  PubMed  Google Scholar 

  8. 8. H. K. Han, J. K. Rhie, D. M. Oh, G. Saito, C. P. Hsu, B. H. Stewart, and G. L. Amidon. CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitro model for peptidomimetic drugs. J. Pharm. Sci. 88:347–350 (1999).

    CAS  PubMed  Google Scholar 

  9. 9. E. Y. Zhang, D. J. Fu, Y. A. Pak, T. Stewart, N. Mukhopadhyay, S. A. Wrighton, and K. M. Hillgren. Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J. Pharmacol. Exp. Ther. 310:437–445 (2004).

    CAS  PubMed  Google Scholar 

  10. 10. M. Brandsch, I. Knutter, and F. H. Leibach. The intestinal H+/peptide symporter PEPT1: structure-affinity relationships. Eur. J. Pharm. Sci. 21:53–60 (2004).

    CAS  PubMed  Google Scholar 

  11. 11. O. O. Clement and A. T. Mehl. HipHop: Pharmacophore based on multiple common-feature alignments. In O. F. Guner (ed.), Pharmacophore Perception, Development, and Use in Drug Design, IUL, San Diego, CA, 2000, pp. 69–84.

    Google Scholar 

  12. 12. C. Y. Yang, A. H. Dantzig, and C. Pidgeon. Intestinal peptide transport systems and oral drug availability. Pharm. Res. 16:1331–1343 (1999).

    CAS  PubMed  Google Scholar 

  13. 13. L. G. Gomella and S. A. Haist. Clinician’s Pocket Drug Reference, McGraw-Hill, New York, 2004.

    Google Scholar 

  14. 14. K. M. Covitz, G. L. Amidon, and W. Sadee. Human dipeptide transporter, hPEPT1, stably transfected into Chinese hamster ovary cells. Pharm. Res. 13:1631–1634 (1996).

    CAS  PubMed  Google Scholar 

  15. 15. P. W. Swaan, B. C. Koops, E. E. Moret, and J. J. Tukker. Mapping the binding site of the small intestinal peptide carrier (PepT1) using comparative molecular field analysis. Receptors Channels 6:189–200 (1998).

    CAS  PubMed  Google Scholar 

  16. 16. P. W. Swaan, F. C. Szoka Jr., and S. Oie. Molecular modeling of the intestinal bile acid carrier: a comparative molecular field analysis study. J. Comput. Aided Mol. Des. 11:581–588 (1997).

    CAS  PubMed  Google Scholar 

  17. 17. J. Li and I. J. Hidalgo. Molecular modeling study of structural requirements for the oligopeptide transporter. J. Drug Target. 4:9–17 (1996).

    CAS  PubMed  Google Scholar 

  18. 18. F. Doring, J. Will, S. Amasheh, W. Clauss, H. Ahlbrecht, and H. Daniel. Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J. Biol. Chem. 273:23211–23218 (1998).

    CAS  PubMed  Google Scholar 

  19. 19. M. E. Ganapathy, W. Huang, H. Wang, V. Ganapathy, and F. H. Leibach. Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochem. Biophys. Res. Commun. 246:470–475 (1998).

    CAS  PubMed  Google Scholar 

  20. 20. P. V. Balimane, I. Tamai, A. Guo, T. Nakanishi, H. Kitada, F. H. Leibach, A. Tsuji, and P. J. Sinko. Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. 250:246–251 (1998).

    CAS  PubMed  Google Scholar 

  21. 21. P. D. Bailey, C. A. R. Boyd, J. R. Bronk, I. D. Collier, D. Meredith, K. M. Morgan, and C. S. Temple. How to make drugs orally active: a substrate template for peptide transporter PepT1. Angew. Chem. Int. Ed. Engl. 39:506–508 (2000).

    CAS  Google Scholar 

  22. 22. B. Bretschneider, M. Brandsch, and R. Neubert. Intestinal transport of β-lactam antibiotics: analysis of the affinity at the H+/peptide symporter (PEPT1), the uptake into caco-2 cell monolayers and the transepithelial flux. Pharm. Res. 16:55–61 (1999).

    CAS  PubMed  Google Scholar 

  23. 23. V. A. Moore, W. J. Irwin, P. Timmins, P. A. Lambert, S. Chong, S. A. Dando, and R. A. Morrison. A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: Affinities of ACE inhibitors. Int. J. Pharm. 210:29–44 (2000).

    CAS  PubMed  Google Scholar 

  24. 24. F. L. Tse, J. M. Jaffe, and A. Troendle. Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers. J. Clin. Pharmacol. 32:630–638 (1992).

    CAS  PubMed  Google Scholar 

  25. 25. W. E. Lipton, Y. N. Li, M. K. Younoszai, and L. D. Stegink. Intestinal absorption of aspartame decomposition products in adult rats. Metabolism 40:1337–1345 (1991).

    CAS  PubMed  Google Scholar 

  26. 26. S. Itagaki, Y. Saito, S. Kubo, Y. Otsuka, Y. Yamamoto, M. Kobayashi, T. Hirano, and K. Iseki. H+-dependent transport mechanism of nateglinide in the brush-border membrane of the rat intestine. J. Pharmacol. Exp. Ther. 312(1):77–82 (2005).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Swaan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekins, S., Johnston, J., Bahadduri, P. et al. In Vitro and Pharmacophore-Based Discovery of Novel hPEPT1 Inhibitors. Pharm Res 22, 512–517 (2005). https://doi.org/10.1007/s11095-005-2505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-2505-y

Key Words:

Navigation