Skip to main content

Advertisement

Log in

Modulation of the Brain Distribution of Imatinib and its Metabolites in Mice by Valspodar, Zosuquidar and Elacridar

  • Short Communication
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The selective protein tyrosine kinase inhibitor, imatinib, inhibits the growth of glioma cells in preclinical models, but its poor brain distribution limits its efficacy in patients. P-glycoprotein (P-gp, rodent Mdr1a/1b or Abcb1a/1b) and Breast cancer resistance protein (rodent Bcrp1 or Abcg2) were suggested to restrict the delivery of imatinib to the brain. This study evaluates the effect of administering selective inhibitors of these transporters together with imatinib on the systemic and cerebral disposition of imatinib in mice.

Materials and Methods

Wild-type, Mdr1a/1b(/) and Bcrp1(/) mice were given imatinib intravenously, either alone, or with valspodar, zosuquidar (P-gp inhibitors), or elacridar (a P-gp and Bcrp1 inhibitor). The blood and brain concentrations of [14C]imatinib and its radioactive metabolites were determined.

Results

The blockade of P-gp by valspodar or zosuquidar (>3 mg/kg) enhanced the brain uptake of imatinib (∼4-fold) in wild-type mice, but not that of its metabolites. Blockade of both P-gp and Bcrp1 by elacridar (>3 mg/kg) produced significantly greater brain penetration of imatinib (9.3-fold) and its metabolites (2.8-fold). In contrast, only the lack of P-gp enhanced imatinib brain penetration (6.4-fold) in knockout mice. These results of brain uptake correlated reasonably well with those obtained previously by our group using in situ brain perfusion.

Conclusions

Imatinib and its metabolites penetrate into the brain poorly and their penetration is limited by P-gp and (probably) Bcrp1. Administering imatinib together with P-gp (and Bcrp1) transporter inhibitors such as elacridar may improve the delivery of imatinib to the brain, making it potentially more effective against malignant gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Bihorel S, Camenisch G, Lemaire M, et al. Influence of Breast Cancer Resistance Protein (Abcg2) and P-glycoprotein (Abcb1a/1b) on imatinib mesylate (Gleevec®) transport across the mouse blood–brain barrier. Submitted for publication.

  2. Wiegand H and Pfaar U, unpublished data

Abbreviations

ABC:

ATP-binding cassette

BB ratio:

Blood/brain concentration ratio

BBB:

Blood–brain barrier

BCRP:

Breast cancer resistance protein

CNS:

Central nervous system

K net :

Net transport coefficient

MG:

Malignant glioma

P-gp:

P-glycoprotein

SD:

Standard deviation

References

  1. E. Buchdunger, T. O’Reilly, and J. Wood. Pharmacology of imatinib (STI571). Eur. J. Cancer. 38:S28–S36 (2002).

    Article  PubMed  Google Scholar 

  2. M. H. Cohen, J. R. Johnson, and R. Pazdur. U.S. Food and Drug Administration Drug Approval Summary: conversion of imatinib mesylate (STI571; Gleevec) tablets from accelerated approval to full approval. Clin. Cancer Res. 11:12–19 (2005).

    PubMed  Google Scholar 

  3. R. Dagher, M. Cohen, G. Williams, M. Rothmann, J. Gobburu, G. Robbie, A. Rahman, G. Chen, A. Staten, D. Griebel, and R. Pazdur. Approval summary: imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin. Cancer Res. 8:3034–3038 (2002).

    PubMed  CAS  Google Scholar 

  4. T. Kilic, J. A. Alberta, P. R. Zdunek, M. Acar, P. Iannarelli, T. O’Reilly, E. Buchdunger, P. M. Black, and C. D. Stiles. Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res. 60:5143–5150 (2000).

    PubMed  CAS  Google Scholar 

  5. E. Raymond, A. Brandes, A. Van Oosterom, C. Dittrich, P. Fumoleau, B. Coudert, C. Twelves, C. De Balincourt, D. Lacombe, and M. Van Den Bent. Multicentre phase II study of imatinib mesylate in patients with recurrent glioblastoma: an EORTC: NDDG/BTG Intergroup Study. ASCO Meeting Abstracts. 22:1501 (2004).

    Google Scholar 

  6. P. Y. Wen, W. K. Yung, K. Hess, S. Silbermann, M. Hayes, D. Schiff, F. Lieberman, T. F. Cloughesy, L. M. DeAngelis, S. M. Chang, L. Junck, H. A. Fine, K. Fink, H. I. Robins, J. J. Raizer, L. E. Abrey, M. P. Mehta, E. A. Maher, P. M. Black, J. Kuhn, R. Capdeville, R. S. Kaplan, A. Murgo, C. Stiles, and M. D. Prados. Phase I study of STI571 (Gleevec) for patients with recurrent malignant gliomas and meningiomas (NABTC 99-08). Proc. Am. Soc. Clin. Oncol. 21: (2002).

  7. H. Dai, P. Marbach, M. Lemaire, M. Hayes, and W. F. Elmquist. Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J. Pharmacol. Exp. Ther. 304:1085–1092 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. P. Le Coutre, K. A. Kreuzer, S. Pursche, M. Bonin, T. Leopold, G. Baskaynak, B. Dorken, G. Ehninger, O. Ottmann, A. Jenke, M. Bornhauser, and E. Schleyer. Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother. Pharmacol. 53:313–323 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. K. Neville, R. A. Parise, P. Thompson, A. Aleksic, M. J. Egorin, F. M. Balis, L. McGuffey, C. McCully, S. L. Berg, and S. M. Blaney. Plasma and cerebrospinal fluid pharmacokinetics of imatinib after administration to nonhuman primates. Clin. Cancer Res. 10:2525–2529 (2004).

    Article  PubMed  CAS  Google Scholar 

  10. D. A. Reardon, M. J. Egorin, J. A. Quinn, J. N. Rich, Sr., I. Gururangan, J. J. Vredenburgh, A. Desjardins, S. Sathornsumetee, J. M. Provenzale, J. E. Herndon, J. M. Dowell, M. A. Badruddoja, R. E. McLendon, T. F. Lagattuta, K. P. Kicielinski, G. Dresemann, J. H. Sampson, A. H. Friedman, A. J. Salvado, and H. S. Friedman. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J. Clin. Oncol. 23:9359–9368 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. D. J. Begley. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther. 104:29–45 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. W. M. Pardridge. The blood–brain barrier: bottleneck in brain drug development. NeuroRx. 2:3–14 (2005).

    Article  PubMed  Google Scholar 

  13. C. L. Graff, and G. M. Pollack. Drug transport at the blood–brain barrier and the choroid plexus. Curr. Drug Metab. 5:95–108 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. E. C. de Lange. Potential role of ABC transporters as a detoxification system at the blood–CSF barrier. Adv. Drug Deliv. Rev. 56:1793–1809 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. H. Kusuhara, and Y. Sugiyama. Efflux transport systems for organic anions and cations at the blood–CSF barrier. Adv. Drug Deliv. Rev. 56:1741–1763 (2004).

    Article  PubMed  CAS  Google Scholar 

  16. H. Kusuhara and Y. Sugiyama. Active efflux across the blood–brain barrier: role of the solute carrier family. NeuroRx. 2:73–85 (2005).

    Article  PubMed  Google Scholar 

  17. W. Loscher, and H. Potschka. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2:86–98 (2005).

    Article  PubMed  Google Scholar 

  18. H. Burger, H. van Tol, A. W. Boersma, M. Brok, E. A. Wiemer, G. Stoter, and K. Nooter. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104:2940–2942 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Hamada, H. Miyano, H. Watanabe, and H. Saito. Interaction of imatinib mesilate with human P-glycoprotein. J. Pharmacol. Exp. Ther. 307:824–828 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. P. J. Houghton, G. S. Germain, F. C. Harwood, J. D. Schuetz, C. F. Stewart, E. Buchdunger, and P. Traxler. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res. 64:2333–2337 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. P. Breedveld, D. Pluim, G. Cipriani, P. Wielinga, O. van Tellingen, A. H. Schinkel, and J. H. Schellens. The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res. 65:2577–2582 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Takasato, S. I. Rapoport, and Q. R. Smith. An in situ brain perfusion technique to study cerebrovascular transport in the rat. Am. J. Physiol. 247:484–493 (1984).

    Google Scholar 

  23. C. Dagenais, C. Rousselle, G. M. Pollack, and J. M. Scherrmann. Development of an in situ mouse brain perfusion model and its application to mdr1a P-glycoprotein-deficient mice. J. Cereb. Blood Flow Metab. 20:381–386 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Q. R. Smith, and J. M. Walker. A review of blood–brain barrier transport techniques. The blood–brain barrier—Biology and Research Protocols, Vol. 89, Humana, Totowa, NJ, 2003, pp. 193–208.

    Google Scholar 

  25. U. Bickel. How to measure drug transport across the blood–brain barrier. NeuroRx. 2:15–26 (2005).

    Article  PubMed  Google Scholar 

  26. R. L. Shepard, J. Cao, J. J. Starling, and A. H. Dantzig. Modulation of P-glycoprotein but not MRP1- or BCRP-mediated drug resistance by LY335979. Int. J. Cancer. 103:121–125 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. H. L. Tai. Technology evaluation: Valspodar, Novartis AG. Curr. Opin. Mol. Ther. 2:459–467 (2000).

    PubMed  CAS  Google Scholar 

  28. M. de Bruin, K. Miyake, T. Litman, R. Robey, and S. E. Bates. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR. Cancer Lett. 146:117–126 (1999).

    Article  PubMed  Google Scholar 

  29. S. Desrayaud. Rôle de la glycoprotéine P dans la distribution cérébrale d’un dérivé de la cyclosporine, le SDZ PSC833, Université, René Descartes, Paris, France, 1997.

  30. D. W. Everett, J. E. Foley, S. M. Singhvi, S. H. Weinstein, and S. J. Warrington. High-performance liquid chromatographic method for the radiometric determination of [14C] bucromarone in human plasma utilizing non-radiolabeled bucromarone as an internal standard. J. Chromatogr. 487:365–373 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. S. P. Khor, and M. Mayersohn. Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling. Residual tissue blood. I. Theoretical considerations. Drug Metab. Dispos. 19:478–485 (1991).

    PubMed  CAS  Google Scholar 

  32. S. Cisternino, F. Bourasset, Y. Archimbaud, D. Semiond, G. Sanderink, and J. M. Scherrmann. Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood–brain barrier in mice and rats. Br. J. Pharmacol. 138:1367–1375 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. L. B. Lan, J. T. Dalton, and E. G. Schuetz. Mdr1 limits CYP3A metabolism in vivo. Mol. Pharmacol. 58:863–869 (2000).

    PubMed  CAS  Google Scholar 

  34. E. G. Schuetz, D. R. Umbenhauer, K. Yasuda, C. Brimer, L. Nguyen, M. V. Relling, J. D. Schuetz, and A. H. Schinkel. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol. Pharmacol. 57:188–197 (2000).

    PubMed  CAS  Google Scholar 

  35. B. Peng, P. Lloyd, and H. Schran. Clinical pharmacokinetics of imatinib. Clin. Pharmacokinet. 44:879–894 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. E. F. Choo, B. Leake, C. Wandel, H. Imamura, A. J. Wood, G. R. Wilkinson, and R. B. Kim. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos. 28:655–660 (2000).

    PubMed  CAS  Google Scholar 

  37. E. M. Kemper, A. E. van Zandbergen, C. Cleypool, H. A. Mos, W. Boogerd, J. H. Beijnen, and O. van Tellingen. Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin. Cancer Res. 9:2849–2855 (2003).

    PubMed  CAS  Google Scholar 

  38. U. Mayer, E. Wagenaar, B. Dorobek, J. H. Beijnen, P. Borst, and A. H. Schinkel. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood–brain barrier P-glycoprotein by oral treatment of mice with PSC833. J. Clin. Invest. 100:2430–2436 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. H. P. Gschwind, U. Pfaar, F. Waldmeier, M. Zollinger, C. Sayer, P. Zbinden, M. Hayes, R. Pokorny, M. Seiberling, M. Ben-Am, B. Peng, and G. Gross. Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab. Dispos. 33:1503–1512 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yves Auberson (Novartis Institutes for Biomedical Research) for providing zosuquidar and elacridar, Dr. Rachael Profit and Dr Owen Parkes for editing the English text. This work was supported by Novartis Pharma AG contract (Novartis-INSERM n° 03035A10) to Dr. Sébastien Bihorel and Dr. Jean-Michel Scherrmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Scherrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bihorel, S., Camenisch, G., Lemaire, M. et al. Modulation of the Brain Distribution of Imatinib and its Metabolites in Mice by Valspodar, Zosuquidar and Elacridar. Pharm Res 24, 1720–1728 (2007). https://doi.org/10.1007/s11095-007-9278-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9278-4

Key words

Navigation