Skip to main content

Advertisement

Log in

Comparison of the Interaction of Human Organic Anion Transporter hOAT4 with PDZ Proteins between Kidney Cells and Placental Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To compare the interaction of human organic anion transporter hOAT4 with PDZ proteins between kidney cells and placental cells.

Materials and Methods

PDZ proteins PDZK1 and NHERF1 were transfected into kidney LLC-PK1 cells and placental BeWo cells expressing hOAT4 or hOAT4-Δ, which lacks the PDZ consensus binding site. The interaction of PDZK1 and NHERF1 with hOAT4 and hOAT4-Δ was investigated by measurement of [3H] estrone sulfate uptake, cell surface and total cell expression of hOAT4.

Results

PDZK1 and NHERF1 enhanced hOAT4 activity in LLC-PK1 cells by increasing the cell surface expression of the transporter. In contrasts, these two PDZ proteins had no effect on hOAT4 activity in BeWo cells.

Conclusion

The interaction of PDZ proteins with hOAT4 may be cell-specific. In placenta, a different set of interacting proteins from PDZK1 and NHERF1 may be required to modulate hOAT4 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. C. Burckhardt, and G. Burckhardt. Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev. Physiol. Biochem. Pharmacol. 146:95–158 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. S. A. Eraly, K. T. Bush, R. V. Sampogna, V. Bhatnagar, and S. K. Nigam. The molecular pharmacology of organic anion transporters: from DNA to FDA? Mol. Pharmacol. 65:479–487 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. T. Sekine, H. Miyazaki, and H. Endou. Molecular physiology of renal organic anion transporters. Am. J. Physiol. Renal. Physiol. 290:F251–261 (2006).

    Article  PubMed  CAS  Google Scholar 

  4. D. H. Sweet. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol. Appl. Pharmacol. 204:198–215 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. G. You. Structure, function, and regulation of renal organic anion transporters. Med. Res. Rev. 22:602–616 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. S. H. Cha, T. Sekine, H. Kusuhara, E. Yu, J. Y. Kim, D. K. Kim, Y. Sugiyama, Y. Kanai, and H. Endu. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta. J. Biol. Chem. 275:4507–4512 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. S. Ekaratanawong, N. Anzai, P. Jutabha, H. Miyazaki, R. Noshiro, M. Takeda, Y. Kanai, S. Sophasan, and H. Endou. Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J. Pharmacol. Sci. 94:297–304 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. B. Ugele, M. V. St-Pierre, M. Pihusch, A. Bahn, and P. Hantschmann. Characterization and identification of steroid sulfate transporters of human placenta. Am. J. Physiol. Endocrinol. Metab. 284:E390–398 (2003).

    PubMed  CAS  Google Scholar 

  9. T. Rabe, R. Hosch, and B. Runnebaum. Diagnosis of intrauterine fetal growth retardation (IUGR) and placental insufficiency by a dehydroepiandrosterone sulfate (DHAS) loading test. Biol. Res. Pregnancy. Perinatol. 4:130–136 (1983).

    PubMed  CAS  Google Scholar 

  10. F. Zhou, W. Xu, M. Hong, Z. Pan, P. J. Sinko, J. Ma, and G. You. The role of N-linked glycosylation in protein folding, membrane targeting, and substrate binding of human organic anion transporter hOAT4. Mol. Pharmacol. 67:868–876 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. H. Miyazaki, N. Anzai, S. Ekaratanawong, T. Sakata, H. J. Shin, P. Jutabha, T. Hirata, X. He, H. Nonoguchi, K. Tomita, Y. Kanai, and H. Endou. Modulation of renal apical organic anion transporter 4 function by two PDZ domain-containing proteins. J. Am. Soc. Nephrol. 16(12):3498–506 (2005).

    Article  PubMed  CAS  Google Scholar 

  12. N. Anzai, H. Miyazaki, R. Noshiro, S. Khamdang, A. Chairoungdua, H. J. Shin, A. Enomoto, S. Sakamoto, T. Hirata, K. Tomita, Y. Kanai, and H. Endou. The multivalent PDZ domain-containing protein PDZK1 regulates transport activity of renal urate-anion exchanger URAT1 via its C terminus. J. Biol. Chem. 279(44):45942–45950 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. P. Wang, J. J. Wang, Y. Xiao, J. W. Murray, P. M. Novikoff, R. H. Angeletti, G. A. Orr, D. Lan, D. L. Silver, and A. W. Wolkoff. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J. Biol Chem. 280(34):30143–30149 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. F. Zhou, M. Hong, G. You. Regulation of human organic anion transporter 4 (hOAT4) by progesterone and protein kinase C in human placental BeWo cells. Am. J. Physiol. Endocrinol. Metab. (2007) (in press).

Download references

Acknowledgment

This work was supported by Grant R01-DK 60034 from the National Institutes of Health (to Dr. Guofeng You).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, F., Xu, W., Tanaka, K. et al. Comparison of the Interaction of Human Organic Anion Transporter hOAT4 with PDZ Proteins between Kidney Cells and Placental Cells. Pharm Res 25, 475–480 (2008). https://doi.org/10.1007/s11095-007-9359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9359-4

Key words

Navigation