Skip to main content

Advertisement

Log in

Projection of Exposure and Efficacious Dose Prior to First-in-Human Studies: How Successful Have We Been?

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Preclinical and clinical data for 35 proprietary Bristol-Myers Squibb discovery compounds (years 1997 to 2005) were collected and analyzed. In each case, exposure and efficacy in human subjects were projected at the time of nomination (for development) prior to first-in-human dosing.

Materials and Methods

Projections of area under the plasma concentration-time curve (AUC) in humans involved the use of one or more methods: (1) allometric scaling of animal pharmacokinetic data; (2) clearance projection employing in vitro data (liver microsomes and hepatocytes); (3) chimpanzee as an animal model; (4) the species-invariant time method; and (5) the Css-mean residence time or “Css-MRT” method. Whenever possible, prior clinical experience with lead compounds enabled the selection of the most appropriate method(s). Multiple approaches were also available at the time of the human efficacious dose projections: (1) efficacious exposure from animal efficacy models; (2) in vitro potency; and (3) prior experience with clinical leads.

Results

Over the 8 year period described, AUC in humans was projected within 2-fold (20 out of 35 compounds; 57%), greater than 2-fold to 4-fold (11 out of 35 compounds; 32%), and greater than 4-fold (4 out of 35 compounds; 11%) of the observed value. At the time of writing, clinical efficacy data were available for 10 compounds only. In this instance, the efficacious doses were also projected within 2-fold (7 out of 10 compounds; 70%), greater than 2-fold to 4-fold (2 out of 10 compounds; 20%), and greater than 4-fold (1 out of 10 compounds; 10%) of the actual clinical dose.

Conclusion

Overall, it was possible to project human exposure and efficacious dose within 4-fold of observed clinical values for about 90% of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ADME:

absorption, distribution, metabolism, and excretion

AUC:

area under the concentration versus time curve

AUCIPT :

area under the concentration versus time curve after intraportal administration

AUCIV :

area under the concentration versus time curve after intravenous administration

BMS:

Bristol-Myers Squibb Co.

CL:

clearance

CLhb:

hepatic blood clearance

CLh,int:

hepatic intrinsic clearance

C max :

maximum concentration

C min :

trough concentration

Css:

dose divided by steady-state volume of distribution

E.R.:

hepatic extraction ratio

f a :

fraction of the dose absorbed

f g :

fraction of the dose escaping first-pass metabolism by the gastrointestinal mucosa

FPO :

oral bioavailability

f u :

fraction unbound

HH:

human hepatocytes

HLM:

human liver microsomes

IC50 :

concentration required for 50% inhibition

IC90 :

concentration required for 90% inhibition

IPT:

intraportal

IV:

intravenous

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

MRT:

mean residence time

NOAEL:

no observable adverse effect level

PB/PK:

physiologically based pharmacokinetic model

PD:

pharmacodynamics

PK:

pharmacokinetics

Qhb:

hepatic blood flow

Vss:

steady-state volume of distribution

References

  1. I. Kolaand, and J. Landis. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3:711–715 (2004).

    Article  CAS  Google Scholar 

  2. G. W. Caldwell, J. A. Masucci, Z. Yan, and W. Hageman. Allometric scaling of pharmacokinetic parameters in drug discovery: can human CL, Vss and t1/2 be predicted from in vivo rat data? Eur. J. Drug Metab. Pharmacokinet. 29:133–143 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. K. Bachmann, J. Byers, and R. Ghosh. Prediction of in vivo hepatic clearance from in vitro data using cryopreserved human hepatocytes. Xenobiotica. 33:475–483 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. A. R. Hilgers, D. P. Smith, J. J. Biermacher, J. S. Day, J. L. Jensen, S. M. Sims, W. J. Adams, J. M. Friis, J. Palandra, J. D. Hosley, E. M. Shobe, and P. S. Burton. Predicting oral absorption of drugs: a case study with a novel class of antimicrobial agents. Pharm. Res. 20:1149–1155 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. R. S. Obach, J. G. Baxter, T. E. Liston, B. M. Silber, B. C. Jones, F. MacIntyre, D. J. Rance, and P. Wastall. The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J. Pharmacol. Exp. Ther. 283:46–58 (1997).

    PubMed  CAS  Google Scholar 

  6. M. R. Shiran, N. J. Proctor, E. M. Howgate, K. Rowland-Yeo, G. T. Tucker, and A. Rostami-Hodjegan. Prediction of metabolic drug clearance in humans: in vitro-in vivo extrapolation vs allometric scaling. Xenobiotica. 36:567–580 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. G. J. Pass, D. Carrie, M. Boylan, S. Lorimore, E. Wright, B. Houston, C. J. Henderson, and C. R. Wolf. Role of hepatic cytochrome p450s in the pharmacokinetics and toxicity of cyclophosphamide: studies with the hepatic cytochrome p450 reductase null mouse. Cancer Res. 65:4211–4217 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. F. Van Bambeke, J. M. Michot, J. Van Eldere, and P. M. Tulkens. Quinolones in 2005: an update. Clin. Microbiol. Infect. 11:256–280 (2005).

    Article  PubMed  Google Scholar 

  9. U. Theuretzbacher, F. Ihle, and H. Derendorf. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin. Pharmacokinet. 45:649–663 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. P. Gaussem, J.L. Reny, C. Thalamas, N. Chatelain, M. Kroumova, B. Jude, B. Boneu, and J.N. Fiessinger. The specific thromboxane receptor antagonist S18886: pharmacokinetic and pharmacodynamic studies. J. Thromb. Haemost. 3:1437–1445 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. I. Mahmoodand, and J. D. Balian. The pharmacokinetic principles behind scaling from preclinical results to phase I protocols. Clin. Pharmacokinet. 36:1–11 (1999).

    Article  Google Scholar 

  12. C. Ramachandran, P. K. Nair, A. Alamo, C. B. Cochrane, E. Escalon, and S. J. Melnick. Anticancer effects of amooranin in human colon carcinoma cell line in vitro and in nude mice xenografts. Int. J. Cancer. 119:2443–2454 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. S. Jones-Bolin, H. Zhao, K. Hunter, A. Klein-Szanto, and B. Ruggeri. The effects of the oral, pan-VEGF-R kinase inhibitor CEP-7055 and chemotherapy in orthotopic models of glioblastoma and colon carcinoma in mice. Mol. Cancer. Ther. 5:1744–1753 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. H. Kai, K. Shibuya, Y. Wang, H. Kameta, T. Kameyama, S. Tahara-Hanaoka, A. Miyamoto, S. Honda, I. Matsumoto, A. Koyama, T. Sumida, and A. Shibuya. Critical role of M. tuberculosis for dendritic cell maturation to induce collagen-induced arthritis in H-2b background of C57BL/6 mice. Immunology. 118:233–239 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. V. L. Kumar, S. Roy, R. Sehgal, and B. M. Padhy. A comparative study on the efficacy of rofecoxib in monoarticular arthritis induced by latex of Calotropis procera and Freund’s complete adjuvant. Inflammopharmacology. 14:17–21 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. C. M. Paulos, B. Varghese, W. R. Widmer, G. J. Breur, E. Vlashi, and P. S. Low. Folate-targeted immunotherapy effectively treats established adjuvant and collagen-induced arthritis. Arthritis Res. Ther. 8:R77 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. C. M. Lee, and L. Farde. Using positron emission tomography to facilitate CNS drug development. Trends Pharmacol. Sci. 27:310–316 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. R. T. Lewis, W. P. Blackaby, T. Blackburn, A. S. Jennings, A. Pike, R. A. Wilson, D. J. Hallett, S. M. Cook, P. Ferris, G. R. Marshall, D. S. Reynolds, W. F. Sheppard, A. J. Smith, B. Sohal, J. Stanley, S. J. Tye, K. A. Wafford, and J.R. Atack. A pyridazine series of alpha2/alpha3 subtype selective GABA A agonists for the treatment of anxiety. J. Med. Chem. 49:2600–2610 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. S. Heck, X. Qian, and M. Velleca. Genetically engineered mouse models for drug discovery: new chemical genetic approaches. Curr. Drug Discov. Technol. 1:13–26 (2004).

    Article  PubMed  CAS  Google Scholar 

  20. J. Tornell, and M. Snaith. Transgenic systems in drug discovery: from target identification to humanized mice. Drug Discov. Today. 7:461–470 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. S. L. Hu. Non-human primate models for AIDS vaccine research. Curr. Drug Targets Infect. Disord. 5:193–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  22. N. L. Haigwood. Predictive value of primate models for AIDS. AIDS Rev. 6:187–198 (2004).

    PubMed  Google Scholar 

  23. N. M. Kneteman, A. J. Weiner, J. O’Connell, M. Collett, T. Gao, L. Aukerman, R. Kovelsky, Z. J. Ni, Q. Zhu, A. Hashash, J. Kline, B. Hsi, D. Schiller, D. Douglas, D. L. Tyrrell, and D. F. Mercer. Anti-HCV therapies in chimeric scid-Alb/uPA mice parallel outcomes in human clinical application. Hepatology. 43:1346–1353 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. R. L. Dedrick. Animal scale-up. J. Pharmacokinet. Biopharm. 1:435–461 (1973).

    Article  PubMed  CAS  Google Scholar 

  25. J. B. Houston. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem. Pharmacol. 47:1469–1479 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. B. A. Hoener. Predicting the hepatic clearance of xenobiotics in humans from in vitro data. Biopharm. Drug Dispos. 15:295–304 (1994).

    Article  Google Scholar 

  27. T. Iwatsubo, N. Hirota, T. Ooie, H. Suzuki, and Y. Sugiyama. Prediction of in vivo drug disposition from in vitro data based on physiological pharmacokinetics. Biopharm. Drug Dispos. 17:273–310 (1996).

    Article  PubMed  CAS  Google Scholar 

  28. R. S. Obach. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab. Dispos. 25:1359–1369 (1997).

    PubMed  CAS  Google Scholar 

  29. B. Davies, and T. Morris. Physiological parameters in laboratory animals and humans. Pharm. Res. 10:1093–1095 (1993).

    Article  PubMed  CAS  Google Scholar 

  30. D. E. Wildman. A map of the common chimpanzee genome. Bioessays. 24:490–493 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. W. F. Mueller, F. Coulston, and F. Korte. The role of the chimpanzee in the evaluation of the risk of foreign chemicals to man. Regul. Toxicol. Pharmacol. 5:182–189 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. B. M. Nath, K. E. Schumann, and J. D. Boyer. The chimpanzee and other non-human-primate models in HIV-1 vaccine research. Trends Microbiol. 8:426–431 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. H. Wong, S. J. Grossman, S. A. Bai, S. Diamond, M. R. Wright, J. E. Grace, Jr., M. Qian, K. He, K. Yeleswaram, and D. D. Christ. The chimpanzee (Pan troglodytes) as a pharmacokinetic model for selection of drug candidates: model characterization and application. Drug Metab. Dispos. 32:1359–1369 (2004).

    Article  PubMed  CAS  Google Scholar 

  34. H. Boxenbaum, and R. Ronfeld. Interspecies pharmacokinetic scaling and the Dedrick plots. Am. J. Physiol. 245:R768–R775 (1983).

    PubMed  CAS  Google Scholar 

  35. I. Mahmood, and R. Yuan. A comparative study of allometric scaling with plasma concentrations predicted by species-invariant time methods. Biopharm. Drug Dispos. 20:137–144 (1999).

    Article  PubMed  CAS  Google Scholar 

  36. T. Wajima, Y. Yano, K. Fukumura, and T. Oguma. Prediction of human pharmacokinetic profile in animal scale up based on normalizing time course profiles. J. Pharm. Sci. 93:1890–1900 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. D. M. Jonker, L. A. Kenna, D. Leishman, R. Wallis, P. A. Milligan, and E. N. Jonsson. A pharmacokinetic–pharmacodynamic model for the quantitative prediction of dofetilide clinical QT prolongation from human ether-a-go-go-related gene current inhibition data. Clin. Pharmacol. Ther. 77:572–582 (2005).

    Article  PubMed  CAS  Google Scholar 

  38. K. A. Walters, M. A. Joyce, J. C. Thompson, M. W. Smith, M. M. Yeh, S. Proll, L. F. Zhu, T. J. Gao, N. M. Kneteman, D. L. Tyrrell, and M. G. Katze. Host-specific response to HCV infection in the chimeric SCID-beige/Alb-uPA mouse model: role of the innate antiviral immune response. PLoS Pathog. 2:0591–0602 (2006).

    Article  CAS  Google Scholar 

  39. P. Turrini, R. Sasso, S. Germoni, I. Marcucci, A. Celluci, Di A. Marco, E. Marra, G. Paonessa, A. Eutropi, R. Laufer, G. Migliaccio, and J. Padron. Development of humanized mice for the study of hepatitis C virus infection. Transplant Proc. 38:1181–1184 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. M. van der Lee, G. Verweel, R. de Groot, and D. Burger. Pharmacokinetics of a once-daily regimen of lopinavir/ritonavir in HIV-1-infected children. Antivir. Ther. 11:439–445 (2006).

    PubMed  Google Scholar 

  41. P. Yeni. Tipranavir: a protease inhibitor from a new class with distinct antiviral activity. J. Acquir. Immune. Defic. Syndr. 34:S91–S94 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. H. M. Jones, N. Parrott, K. Jorga, and T. Lave. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin. Pharmacokinet. 45:511–542 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. CDER. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Available at: http://www.fda.gov/cder/guidance/5541fnl.htm, (2005).

  44. K. W. Ward, R. Nagilla, and L. J. Jolivette. Comparative evaluation of oral systemic exposure of 56 xenobiotics in rat, dog, monkey and human. Xenobiotica. 35:191–210 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. J. F. Levesque, M. Gaudreault, R. Houle, and N. Chauret. Evaluation of human hepatocyte incubation as a new tool for metabolism study of androstenedione and norandrostenedione in a doping control perspective. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 780:145–153 (2002).

    Article  PubMed  CAS  Google Scholar 

  46. Q. Wang, R. Jia, C. Ye, M. Garcia, J. Li, and I. J. Hidalgo. Glucuronidation and sulfation of 7-hydroxycoumarin in liver matrices from human, dog, monkey, rat, and mouse. In Vitro Cell Dev. Biol. Anim. 41:97–103 (2005).

    Article  PubMed  CAS  Google Scholar 

  47. I. Mahmood, and J. D. Balian. Interspecies scaling: predicting clearance of drugs in humans. Three different approaches. Xenobiotica. 26:887–895 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. T. Lave, A. H. Schmitt-Hoffmann, P. Coassolo, B. Valles, G. Ubeaud, B. Ba, R. Brandt, and R. C. Chou. A new extrapolation method from animals to man: application to a metabolized compound, mofarotene. Life Sci. 56:PL473–PL478 (1995).

    Article  PubMed  CAS  Google Scholar 

  49. R. Nagilla, and K. W. Ward. A comprehensive analysis of the role of correction factors in the allometric predictivity of clearance from rat, dog, and monkey to humans. J. Pharm. Sci. 93:2522–2534 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. D. Sun, L. X. Yu, M. A. Hussain, D. A. Wall, R. L. Smith, and G. L. Amidon. In vitro testing of drug absorption for drug ‘developability’ assessment: forming an interface between in vitro preclinical data and clinical outcome. Curr. Opin. Drug Discov. Devel. 7:75–85 (2004).

    PubMed  CAS  Google Scholar 

  51. E. S. Kostewicz, M. Wunderlich, U. Brauns, R. Becker, T. Bock, and J. B. Dressman. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J. Pharm. Pharmacol. 56:43–51 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. J. B. Dressman, and C. Reppas. In vitro–in vivo correlations for lipophilic, poorly water-soluble drugs. Eur. J. Pharm. Sci. 11:S73–S80 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. H. Wei, and R. Lobenberg. Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur. J. Pharm. Sci. 29:45–52 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. Y. Gan, M. G. Wientjes, R. A. Badalament, and J. L. Au. Pharmacodynamics of doxorubicin in human bladder tumors. Clin. Cancer Res. 2:1275–1283 (1996).

    PubMed  CAS  Google Scholar 

  55. D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen, G. Li, R. E. Schreck, T. J. Abrams, T. J. Ngai, L. B. Lee, L. J. Murray, J. Carver, E. Chan, K. G. Moss, J. O. Haznedar, J. Sukbuntherng, R. A. Blake, L. Sun, C. Tang, T. Miller, S. Shirazian, G. McMahon, and J. M. Cherrington. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9:327–337 (2003).

    PubMed  CAS  Google Scholar 

  56. N. Masuda, K. Matsui, N. Yamamoto, T. Nogami, K. Nakagawa, S. Negoro, K. Takeda, N. Takifuji, M. Yamada, S. Kudoh, T. Okuda, S. Nemoto, K. Ogawa, H. Myobudani, S. Nihira, and M. Fukuoka. Phase I trial of oral 2′-deoxy-2′-methylidenecytidine: on a daily × 14-day schedule. Clin. Cancer Res. 6:2288–2294 (2000).

    PubMed  CAS  Google Scholar 

  57. C. Sessa, M. Zucchetti, M. Ghielmini, J. Bauer, M. D’Incalci, J. de Jong, H. Naegele, S. Rossi, M. A. Pacciarini, L. Domenigoni, and F. Cavalli. Phase I clinical and pharmacological study of oral methoxymorpholinyl doxorubicin (PNU 152243). Cancer Chemother. Pharmacol. 44:403–410 (1999).

    Article  PubMed  CAS  Google Scholar 

  58. A. Fura. Role of pharmacologically active metabolites in drug discovery and development. Drug Discov. Today. 11:133–142 (2006).

    Article  PubMed  CAS  Google Scholar 

  59. A. Fura, Y. Z. Shu, M. Zhu, R. L. Hanson, V. Roongta, and W. G. Humphreys. Discovering drugs through biological transformation: role of pharmacologically active metabolites in drug discovery. J. Med. Chem. 47:4339–4351 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. K. Bleasby, J. C. Castle, C. J. Roberts, C. Cheng, W. J. Bailey, J. F. Sina, A. V. Kulkarni, M. J. Hafey, R. Evers, J. M. Johnson, R. G. Ulrich, and J. G. Slatter. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 36:963–988 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. Y. Shitara, T. Horie, and Y. Sugiyama. Transporters as a determinant of drug clearance and tissue distribution. Eur. J. Pharm. Sci. 27:425–446 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. F. P. Theil, T. W. Guentert, S. Haddad, and P. Poulin. Utility of physiologically based pharmacokinetic models to drug development and rational drug discovery candidate selection. Toxicol. Lett. 138:29–49 (2003).

    Article  PubMed  CAS  Google Scholar 

  63. S. J. Franks, M. K. Spendiff, J. Cocker, and G. D. Loizou. Physiologically based pharmacokinetic modelling of human exposure to 2-butoxyethanol. Toxicol. Lett. 162:164–173 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. S. Bjorkman, D. R. Wada, B. M. Berling, and G. Benoni. Prediction of the disposition of midazolam in surgical patients by a physiologically based pharmacokinetic model. J. Pharm. Sci. 90:1226–1241 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. S. Bjorkman. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br. J. Clin. Pharmacol. 59:691–704 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all of the BMS colleagues who made the various data available for collation. Their help is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Zheng, M., Yang, Z. et al. Projection of Exposure and Efficacious Dose Prior to First-in-Human Studies: How Successful Have We Been?. Pharm Res 25, 713–726 (2008). https://doi.org/10.1007/s11095-007-9411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9411-4

Key words

Navigation