Skip to main content
Log in

Stereoselective Metabolism of Bupropion by Cytochrome P4502B6 (CYP2B6) and Human Liver Microsomes

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Hydroxylation of the antidepressant and smoking deterrent drug bupropion is a clinically important bioactivation and elimination pathway. Bupropion hydroxylation is catalyzed selectively by cytochrome P4502B6 (CYP2B6). CYP2B6-catalyzed bupropion hydroxylation has been used as an in vitro and in vivo phenotypic probe for CYP2B6 activity and CYP2B6 drug interactions. Bupropion is chiral, used clinically as a racemate, and disposition is stereoselective. Nevertheless, it is unknown whether CYP2B6-catalyzed bupropion hydroxylation is stereoselective.

Methods

Hydroxylation of racemic bupropion by recombinant CYP2B6 and human liver microsomes was evaluated using a stereoselective assay.

Results

At therapeutic concentrations, hydroxylation of (S)-bupropion was threefold and 1.5-greater than (R)-bupropion, respectively, by recombinant CYP2B6 and human liver microsomes. In vitro intrinsic clearances were likewise different for bupropion enantiomers.

Conclusions

Stereoselective bupropion hydroxylation may have implications for the therapeutic efficacy of bupropion as an antidepressant or smoking cessation therapy, and for the use of bupropion as an in vivo phenotypic probe for CYP2B6 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CYP2B6:

cytochrome P4502B6

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

References

  1. A. A. Lai, and D.H. Schroeder. Clinical pharmacokinetics of bupropion: a review. J. Clin. Psychiatry. 44:82–84 (1983).

    PubMed  CAS  Google Scholar 

  2. M. L. Bondarev, T. S. Bondareva, R. Young, and R. A. Glennon. Behavioral and biochemical investigations of bupropion metabolites. Eur. J. Pharmacol. 474:85–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. M. I. Damaj, F. I. Carroll, J. B. Eaton, H. A. Navarro, B. E. Blough, S. Mirza, R. J. Lukas, and B. R. Martin. Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotinic receptors. Mol. Pharmacol. 66:675–682 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. S. Palovaara, O. Pelkonen, J. Uusitalo, S. Lundgren, and K. Laine. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin. Pharmacol. Ther. 74:326–333 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. J. W. Jefferson, J. F. Pradko, and K. T. Muir. Bupropion for major depressive disorder: Pharmacokinetic and formulation considerations. Clin. Ther. 27:1685–1695 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. R. F. Suckow, M. F. Zhang, and T. B. Cooper. Enantiomeric determination of the phenylmorpholinol metabolite of bupropion in human plasma using coupled achiral–chiral liquid chromatography. Biomed. Chromatogr. 11:174–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. H. Xu, K. K. Loboz, A. S. Gross, and A. J. McLachlan. Stereoselective analysis of hydroxybupropion and application to drug interaction studies. Chirality 19:163–170 (2007).

    Article  PubMed  CAS  Google Scholar 

  8. R. Coles, and E. D. Kharasch. Stereoselective analysis of bupropion and hydroxybupropion in human plasma and urine by LC/MS/MS. J. Chromatogr. B. 857:67–75 (2007).

    Article  CAS  Google Scholar 

  9. L. M. Hesse, K. Venkatakrishnan, M. H. Court, L. L. von Moltke, S. X. Duan, R. I. Shader, and D. J. Greenblatt. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab. Dispos. 28:1176–1183 (2000).

    PubMed  CAS  Google Scholar 

  10. S. R. Faucette, R. L. Hawke, E. L. Lecluyse, S. S. Shord, B. Yan, R. M. Laethem, and C. M. Lindley. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab. Dispos. 28:1222–1230 (2000).

    PubMed  CAS  Google Scholar 

  11. S. R. Faucette, R. L. Hawke, S. S. Shord, E. L. Lecluyse, and C. M. Lindley. Evaluation of the contribution of cytochrome P450 3A4 to human liver microsomal bupropion hydroxylation. Drug Metab. Dispos. 29:1123–1129 (2001).

    PubMed  CAS  Google Scholar 

  12. A. M. Lee, C. Jepson, E. Hoffmann, L. Epstein, L. W. Hawk, C. Lerman, and R. F. Tyndale. CYP2B6 genotype alters abstinence rates in a bupropion smoking cessation trial. Biol. Psychiatry 62:635–641 (2007).

    Article  PubMed  CAS  Google Scholar 

  13. S. Ekins, and S. A. Wrighton. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31:719–754 (1999).

    Article  PubMed  CAS  Google Scholar 

  14. M. Turpeinen, H. Raunio, and O. Pelkonen. The functional role of CYP2B6 in human drug metabolism: substrates and inhibitors in vitro, in vivo and in silico. Curr. Drug Metab. 7:705–714 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. C. Sridar, U. M. Kent, L. M. Notley, E. M. Gillam, and P. F. Hollenberg. Effect of tamoxifen on the enzymatic activity of human cytochrome CYP2B6. J. Pharmacol. Exp. Ther. 301:945–952 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. E. D. Kharasch, C. Hoffer, D. Whittington, and P. Sheffels. Role of hepatic and intestinal cytochrome CYP3A and CYP2B6 in the metabolism, disposition and miotic effects of methadone. Clin. Pharmacol. Ther. 76:250–269 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. R. A. Totah, K. E. Allen, P. Sheffels, D. Whittington, and E. D. Kharasch. Enantiomeric metabolic interactions and stereoselective human methadone metabolism. J. Pharmacol. Exp. Ther. 321:389–399 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. D. Nolan, E. Phillips, and S. Mallal. Efavirenz and CYP2B6 polymorphism: implications for drug toxicity and resistance. Clin. Infect. Dis. 42:408–410 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. U. M. Zanger, K. Klein, T. Saussele, J. Blievernicht, M. H. Hoffman, and M. Schwab. Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance. Pharmacogenomics 8:743–759 (2007).

    Article  PubMed  CAS  Google Scholar 

  20. L. M. Hesse, Y. Sakai, D. Vishnuvardhan, A. P. Li, L. L. Von Moltke, and D. J. Greenblatt. Effect of bupropion on CYP2B6 and CYP3A4 catalytic activity, immunoreactive protein and mRNA levels in primary human hepatocytes: comparison with rifampicin. J. Pharm. Pharmacol. 55:1229–1239 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. S. R. Faucette, H. Wang, G. A. Hamilton, S. L. Jolley, D. Gilbert, C. Lindley, B. Yan, M. Negishi, and E. L. LeCluyse. Regulation of CYP2B6 in primary human hepatocytes by prototypical inducers. Drug Metab. Dispos. 32:348–358 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. K. K. Loboz, A. S. Gross, K. M. Williams, W. S. Liauw, R. O. Day, J. K. Blievernicht, U. M. Zanger, and A. J. McLachlan. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: Effect of induction by rifampin and ethnicity. Clin. Pharmacol. Ther. 80:75–84 (2006).

    Article  PubMed  CAS  Google Scholar 

  23. R. L. Walsky, A. V. Astuccio, and R. S. Obach. Evaluation of 227 drugs for in vitro inhibition of cytochrome P450 2B6. J. Clin. Pharmacol. 46:1426–1438 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. M. Turpeinen, R. Nieminen, T. Juntunen, P. Taavitsainen, H. Raunio, and O. Pelkonen. Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro. Drug Metab. Dispos. 32:626–631 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. L. M. Hesse, P. He, S. Krishnaswamy, Q. Hao, K. Hogan, L. L. von Moltke, D. J. Greenblatt, and M. H. Court. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics 14:225–238 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. T. Richter, T. E. Murdter, G. Heinkele, J. Pleiss, S. Tatzel, M. Schwab, M. Eichelbaum, and U. M. Zanger. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J. Pharmacol. Exp. Ther. 308:189–197 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. M. Turpeinen, A. Tolonen, J. Uusitalo, J. Jalonen, O. Pelkonen, and K. Laine. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin. Pharmacol. Ther. 77:553–559 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. J. Kirchheiner, C. Klein, I. Meineke, J. Sasse, U. M. Zanger, T. E. Murdter, I. Roots, and J. Brockmöller. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 13:619–626 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. T. M. Klees, P. Sheffels, K. E. Thummel, and E. D. Kharasch. Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology 102:550–556 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. J. S. Munro, and T. A. Walker. Bupropion hydrochloride: the development of a chiral separation using an ovomucoid column. J. Chromatogr. A. 913:275–282 (2001).

    Article  PubMed  CAS  Google Scholar 

  31. R. L. Walsky, and R. S. Obach. Verification of the selectivity of (+)N-3-benzylnirvanol as a CYP2C19 inhibitor. Drug Metab. Dispos. 31:343 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. A. Petsalo, M. Turpeinen, and A. Tolonen. Identification of bupropion urinary metabolites by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 21:2547–2554 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Q. K. Fang, Z. Han, P. Grover, D. Kessler, C. H. Senanayake*, and S. A. Wald. Rapid access to enantiopure bupropion and its major metabolite by stereospecific nucleophilic substitution on an a-ketotriflate. Tetrahedron: Asymmetry 11:3659–3663 (2000).

    Article  CAS  Google Scholar 

  34. L. Gervot, B. Rochat, J. C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis, H. Martin, P. Beaune, and I. de Waziers. Human CYP2B6: Expression, inducibility and catalytic activities. Pharmacogenetics 9:295–306 (1999).

    Article  PubMed  CAS  Google Scholar 

  35. S. Miksys, C. Lerman, P. G. Shields, D. C. Mash, and R. F. Tyndale. Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain. Neuropharmacology 45:122–132 (2003).

    Article  PubMed  CAS  Google Scholar 

  36. C. L. DeVane, S. C. Laizure, J. T. Stewart, B. E. Kolts, E. G. Ryerson, R. L. Miller, and A. A. Lai. Disposition of bupropion in healthy volunteers and subjects with alcoholic liver disease. J. Clin. Psychopharmacol. 10:328–332 (1990).

    Article  PubMed  CAS  Google Scholar 

  37. E. D. Kharasch, D. Mitchell, and R. Coles. Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for CYP2B6 activity. J. Clin. Pharmacol. (in press) (2008).

Download references

Acknowledgements

Supported by NIH R01DA14211 and K24DA00417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan D. Kharasch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coles, R., Kharasch, E.D. Stereoselective Metabolism of Bupropion by Cytochrome P4502B6 (CYP2B6) and Human Liver Microsomes. Pharm Res 25, 1405–1411 (2008). https://doi.org/10.1007/s11095-008-9535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9535-1

Key words

Navigation