Skip to main content

Advertisement

Log in

New Predictive Models for Blood–Brain Barrier Permeability of Drug-like Molecules

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The goals of the present study were to apply a generalized regression model and support vector machine (SVM) models with Shape Signatures descriptors, to the domain of blood–brain barrier (BBB) modeling.

Materials and Methods

The Shape Signatures method is a novel computational tool that was used to generate molecular descriptors utilized with the SVM classification technique with various BBB datasets. For comparison purposes we have created a generalized linear regression model with eight MOE descriptors and these same descriptors were also used to create SVM models.

Results

The generalized regression model was tested on 100 molecules not in the model and resulted in a correlation r 2 = 0.65. SVM models with MOE descriptors were superior to regression models, while Shape Signatures SVM models were comparable or better than those with MOE descriptors. The best 2D shape signature models had 10-fold cross validation prediction accuracy between 80–83% and leave-20%-out testing prediction accuracy between 80–82% as well as correctly predicting 84% of BBB+ compounds (n = 95) in an external database of drugs.

Conclusions

Our data indicate that Shape Signatures descriptors can be used with SVM and these models may have utility for predicting blood–brain barrier permeation in drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADME:

absorption, distribution, metabolism and excretion

BBB:

blood–brain barrier

CNS:

central nervous system

MEP:

molecular electrostatic potential

MOE:

molecular operating environment

PCA:

principal component analysis

P-gp:

P-glycoprotein

QSAR:

quantitative structure activity relationship

RFE:

recursive feature elimination

SAS:

solvent accessible surface

SVM:

support vector machine

TPSA:

topological polar surface area

UFS:

unsupervised forward selection

References

  1. S. Ekins, C. L. Waller, P. W. Swaan, G. Cruciani, S. A. Wrighton, and J. H. Wikel. Progress in predicting human ADME parameters in silico. J. Pharmacol. Toxicol. Methods 44:251–272 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. H. van de Waterbeemd, and E. Gifford. ADMET in silico modelling: towards prediction paradise? Nat. Rev. 2:192–204 (2003).

    Google Scholar 

  3. S. Ekins, and P. W. Swaan. Computational models for enzymes, transporters, channels and receptors relevant to ADME/TOX. Rev. Comp. Chem. 20:333–415 (2004).

    Article  CAS  Google Scholar 

  4. R. Cecchelli, V. Berezowski, S. Lundquist, M. Culot, M. Renftel, M. P. Dehouck, and L. Fenart. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. 6:650–661 (2007).

    Article  CAS  Google Scholar 

  5. A. George. The design and molecular modeling of CNS drugs. Curr. Opin. Drug. Disc. Dev. 2:286–292 (1999).

    CAS  Google Scholar 

  6. K. M. Mahar Doan, J. E. Humphreys, L. O. Webster, S. A. Wring, L. J. Shampine, C. J. Serabjit-Singh, K. K. Adkison, and J. W. Polli. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J. Pharmacol. Exp. Ther. 303:1029–1037 (2002).

    Article  PubMed  CAS  Google Scholar 

  7. F. Lombardo, J. F. Blake, and W. J. Curatolo. Computation of brain–blood partitioning of organic solutes via free energy calculations. J. Med. Chem. 39:4750–4755 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. U. Norinder, and M. Haeberlein. Computational approaches to the prediction of the blood–brain distribution. Adv. Drug Del. Rev. 54:291–313 (2002).

    Article  CAS  Google Scholar 

  9. D. E. Clark. In silico prediction of blood–brain barrier permeation. Drug Discov. Today. 8:927–933 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. J. T. Goodwin, and D. E. Clark. In silico predictions of blood–brain barrier penetration: considerations to “keep in mind”. J. Pharmacol. Exp. Ther. 315:477–483 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. M. Iyer, R. Mishru, Y. Han, and A. J. Hopfinger. Predicting blood–brain barrier partitioning of organic molecules using membrane-interaction QSAR analysis. Pharm. Res. 19:1611–1621 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. M. Iyer, E. J. Reschly, and M. D. Krasowski. Functional evolution of the pregnane X receptor. Expert Opin. Drug Metab. Toxicol. 2:381–397 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. M. Lobell, L. Molnar, and G. M. Keseru. Recent advances in the prediction of blood–brain partitioning from molecular structure. J. Pharm. Sci. 92:360–370 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. F. Ooms, P. Weber, P. A. Carrupt, and B. Testa. A simple model to predict blood–brain barrier permeation from 3D molecular fields. Biochim. Biophys. Acta. 1587:118–125 (2002).

    PubMed  CAS  Google Scholar 

  15. R. J. Zauhar, G. Moyna, L. Tian, Z. Li, and W. J. Welsh. Shape signatures: a new approach to computer-aided ligand- and receptor-based drug design. J. Med. Chem. 46:5674–5690 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. K. Nagarajan, R. Zauhar, and W. J. Welsh. Enrichment of ligands for the serotonin receptor using the Shape Signatures approach. J. Chem. Inf. Model. 45:49–57 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. C. Y. Wang, N. Ai, S. Arora, E. Erenrich, K. Nagarajan, R. Zauhar, D. Young, and W. J. Welsh. Identification of previously unrecognized antiestrogenic chemicals using a novel virtual screening approach. Chem. Res. Toxicol. 19:1595–1601 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. S. Kortagere, and W. J. Welsh. Development and application of hybrid structure based method for efficient screening of ligands binding to G-protein coupled receptors. J. Comput-Aided Mol. Des. 20:789–802 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. P. J. Meek, Z. Liu, L. Tian, C. Y. Wang, W. J. Welsh, and R. J. Zauhar. Shape signatures: speeding up computer aided drug discovery. Drug. Discov. Today 11:895–904 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. P. Garg, and J. Verma. In silico prediction of blood brain barrier permeability: an artificial neural network model. J. Chem. Inf. Model 46:289–297 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. T. J. Hou, and X. J. Xu. ADME evaluation in drug discovery. 3. Modeling blood–brain barrier partitioning using simple molecular descriptors. J. Chem. Inf. Comput. Sci. 43:2137–2152 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. D. A. Konovalov, D. Coomans, E. Deconinck, and Y. V. Heyden. Benchmarking of QSAR models for blood–brain barrier permeation. J. Chem. Inf. Model 47:1648–1656 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. H. Li, C. W. Yap, C. Y. Ung, Y. Xue, Z. W. Cao, and Y. Z. Chen. Effect of selection of molecular descriptors on the prediction of blood–brain barrier penetrating and nonpenetrating agents by statistical learning methods. J. Chem. Inf. Model 45:1376–1384 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. R. Liu, H. Sun, and S. S. So. Development of quantitative structure–property relationship models for early ADME evaluation in drug discovery. 2. Blood–brain barrier penetration. J. Chem. Inf. Comput. Sci. 41:1623–1632 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. G. Subramanian, and D. B. Kitchen. Computational models to predict blood–brain barrier permeation and CNS activity. J. Comput-Aided Mol. Des. 17:643–664 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. L. Gomella, and S. Haist. Clinician’s pocket drug reference. McGraw-Hill, New York, 2004.

    Google Scholar 

  27. C. Chang, P. M. Bahadduri, J. E. Polli, P. W. Swaan, and S. Ekins. Rapid identification of P-glycoprotein substrates and inhibitors. Drug Metab. Dispos. 34:1976–1984 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. S. Ekins, J. S. Johnston, P. Bahadduri, V. M. D’Souzza, A. Ray, C. Chang, and P. W. Swaan. In vitro and pharmacophore based discovery of novel hPEPT1 inhibitors. Pharm. Res. 22:512–517 (2005).

    Article  PubMed  CAS  Google Scholar 

  29. J. Gasteiger, and M. Marsili. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 36:3219–3228 (1980).

    Article  CAS  Google Scholar 

  30. R. J. Zauhar. SMART: a solvent-accessible triangulated surface generator for molecular graphics and boundary element applications. J. Comput-Aided Mol. Des. 9:149–159 (1995).

    Article  PubMed  CAS  Google Scholar 

  31. D. S. Chekmarev, V. Kholodovych, K. V. Balakin, Y. Ivanenkov, S. Ekins, and W. J. Welsh. Shape signatures: new descriptors for predicting cardiotoxicity in silico. Chem. Res. Toxicol., in press (2008).

  32. C. Cortes, and V. Vapnik. Support vector networks. Mach. Learn. 20:273–293 (1995).

    Google Scholar 

  33. V. Vapnik. Statistical learning theory. Wiley, New York, 1998.

    Google Scholar 

  34. A. H. Fielding. Cluster and classification techniques for the biosciences. Cambridge University Press, New York, 2007.

    Google Scholar 

  35. D. Plewczynski, S. A. Spieser, and U. Koch. Assessing different classification methods for virtual screening. J. Chem. Inf. Model 46:1098–1106 (2006).

    Article  PubMed  CAS  Google Scholar 

  36. M. Tobita, T. Nishikawa, and R. Nagashima. A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorg. Med. Chem. Lett. 15:2886–2890 (2005).

    Article  PubMed  CAS  Google Scholar 

  37. Y. Xue, C.W. Yap, L. Z. Sun, Z. W. Cao, J. F. Wang, and Y. Z. Chen. Prediction of P-glycoprotein substrates by a support vector machine approach. J. Chem. Inf. Comput. Sci. 44:1497–1505 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. C. C. Chang, and C. J. Lin. LIBSVM: A library for support vector machines, 2001.

  39. C. Y. Ung, H. Li, C. W. Yap, and Y. Z. Chen. In silico prediction of pregnane X receptor activators by machine learning approaches. Mol. Pharmacol. 71:158–168 (2007).

    Article  PubMed  CAS  Google Scholar 

  40. B. W. Matthews. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta. 405:442–451 (1975).

    PubMed  CAS  Google Scholar 

  41. D. C. Whitley, M. G. Ford, and D. J. Livingstone. Unsupervised forward selection: a method for eliminating redundant variables. J. Chem. Inf. Comput. Sci. 40:1160–1168 (2000).

    Article  PubMed  CAS  Google Scholar 

  42. H. Van de Waterbeemd, and M. Kansy. Hydrogen-bonding capacity and brain penetration. Chimia. 46:5 (1992).

    Google Scholar 

  43. M. H. Abraham, H. S. Chadha, and R. C. Mitchell. Hydrogen-bonding. Part 36. Determination of blood brain distribution using octanol–water partition coefficients. Drug Des. Discov. 13:123–131 (1995).

    PubMed  CAS  Google Scholar 

  44. D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood–brain barrier penetration. J. Pharm. Sci. 88:815–821 (1999).

    Article  PubMed  CAS  Google Scholar 

  45. W. L. Jorgensen, and E. M. Duffy. Prediction of drug solubility from Monte Carlo simulations. Bioorg. Med. Chem. Lett. 10:1155–1158 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. U. Norinder, P. Sjoberg, and T. Osterberg. Theoretical calculation and prediction of brain–blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J. Pharm. Sci. 87:952–959 (1998).

    Article  PubMed  CAS  Google Scholar 

  47. R. M. M. Kaliszan. Brain/blood distribution described by a combination of partition coefficient and molecular mass. Int. J. Pharm. 145:8 (1996).

    Article  Google Scholar 

  48. X. C. Fu, C. X. Chen, W. Q. Liang, and Q. S. Yu. Predicting blood–brain barrier penetration of drugs by polar molecular surface area and molecular volume. Acta Pharmacol. Sin. 22:663–668 (2001).

    PubMed  CAS  Google Scholar 

  49. H. Sun. A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption. J. Chem. Inf. Comput. Sci. 44:748–757 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. S. Van Damme, W. Langenaeker, and P. Bultinck. Prediction of blood–brain partitioning: a model based on ab initio calculated quantum chemical descriptors. J. Mol. Graph. Model., in press (2007).

  51. S. Ekins, M. J. Embrechts, C. M. Breneman, K. Jim, and J.-P. Wery. Novel applications of Kernel-partial least squares to modeling a comprehensive array of properties for drug discovery. In S. Ekins (ed.), Computational toxicology: risk assessment for pharmaceutical and environmental chemicals, Wiley, Hoboken, 2007, pp. 403–432.

    Google Scholar 

  52. R. Todeschini, and V. Consonni. Handbook of molecular descriptors. Wiley, Weinheim, 2000.

    Google Scholar 

Download references

Acknowledgments

Support for this work has been provided by the USEPA-funded Environmental Bioinformatics and Computational Toxicology Center (ebCTC), under STAR Grant number GAD R 832721-010. WJW gratefully acknowledges support for this work provided by the Defense Threat Reduction Agency, under contract number HDTRA-BB07TAS020. This work was also funded in part by NIH R21-GM081394 from the National Institute of General Medical Sciences and by NIH Integrated Advanced Information Management Systems (IAIMS) Grant # 2G08LM06230-03A1 from the National Library of Medicine. This work has not been reviewed by and does not represent the opinions of the funding agencies. The authors are sincerely grateful to Randy Zauhar, Ph.D., of the University of the Sciences in Philadelphia, for useful discussions on technical aspects of Shape Signatures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Ekins.

Electronic supplementary materials

Below is the link to the electronic supplementary materials.

Supplemental Table 1

Details the list of BBB datasets available in literature along with references. (DOC 134 KB)

Supplemental Table 2

Provides model predictions for the SCUT database and consensus scoring respectively. Both are available online along with the SDF files for the Li, Combined and SCUT datasets. (XLS 67.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortagere, S., Chekmarev, D., Welsh, W.J. et al. New Predictive Models for Blood–Brain Barrier Permeability of Drug-like Molecules. Pharm Res 25, 1836–1845 (2008). https://doi.org/10.1007/s11095-008-9584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9584-5

KEY WORDS

Navigation