Skip to main content
Log in

Use of Tc-99m Mebrofenin as a Clinical Probe to Assess Altered Hepatobiliary Transport: Integration of In Vitro, Pharmacokinetic Modeling, and Simulation Studies

  • RESEARCH PAPER
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Transport of the hepatobiliary scintigraphy agent Tc-99m mebrofenin (MEB) was characterized and simulation studies were conducted to examine the effects of altered hepatic transport on MEB pharmacokinetics in humans.

Methods

MEB transport was investigated in Xenopus laevis oocytes expressing OATP1B1 or OATP1B3, and in membrane vesicles prepared from HEK293 cells transfected with MRP2 or MRP3. A pharmacokinetic model was developed based on blood, urine and bile concentration-time profiles obtained in healthy humans, and the effect of changes in hepatic uptake and/or excretion associated with disease states (hyperbilirubinemia and cholestasis) on MEB disposition was simulated.

Results

MEB (80 pM) transport by OATP1B1 and OATP1B3 was inhibited by rifampicin (50 μM) to 10% and 4% of control, respectively. MEB (0.4 nM) transport by MRP2 was inhibited to 12% of control by MK571 (50 μM); MRP3-mediated transport was inhibited to 5% of control by estradiol-17-beta-glucuronide (100 μM). A two-compartment model described MEB (2.5 mCi) systemic disposition in humans (systemic clearance = 16.2 ± 2.7 ml min−1 kg−1); biliary excretion was the predominant route of hepatic elimination (efflux rate constants ratio canalicular/sinusoidal = 3.4 ± 0.8). Based on simulations, altered hepatic transport markedly influenced MEB systemic and hepatic exposure.

Conclusions

MEB may be a useful probe to assess how altered hepatic function at the transport level modulates hepatobiliary drug disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EF:

gallbladder ejection fraction

E217βG:

estradiol 17-β-d-glucuronide

GB:

gamma counts over gallbladder region

HEK293:

human embryonic kidney cells

HIDA:

hepatobiliary imino diacetic acid

MEB:

Tc-99m mebrofenin

MRP:

multidrug resistance-associated protein

OATP:

organic anion transporting polypeptide

OR-2:

oocyte Ringer’s 2 buffer

Tc-99m:

99mtechnetium

TR :

Mrp2 transport-deficient Wistar rat

References

  1. S. Krishnamurthy, and G. T. Krishnamurthy. Technetium-99m-iminodiacetic acid organic anions: review of biokinetics and clinical application in hepatology. Hepatology. 9:139–153 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. E. Gencoglu, H. Karakayali, G. Moray, A. Aktas, and M. Haberal. Evaluation of pediatric liver transplant recipients using quantitative hepatobiliary scintigraphy. Transplant Proc. 34:2160–2162 (2002).

    Article  PubMed  CAS  Google Scholar 

  3. M. Koruk, S. Ozkilic, M. C. Savas, Z. Celen, A. Kadayifci, and C. Ozkilic. Evaluation of hepatic functions and biliary dynamics in patients with liver cirrhosis by quantitative scintigraphy. Hepatogastroenterology. 50:1803–1805 (2003).

    PubMed  Google Scholar 

  4. Y. Bujanover, S. Bar-Meir, I. Hayman, and J. Baron. 99mTc-HIDA cholescintigraphy in children with Dubin–Johnson syndrome. J. Pediatr. Gastroenterol. Nutr. 2:311–312 (1983).

    PubMed  CAS  Google Scholar 

  5. T. Pinos, J. M. Constansa, A. Palacin, and C. Figueras. A new diagnostic approach to the Dubin–Johnson syndrome. Am. J. Gastroenterol. 85:91–93 (1990).

    PubMed  CAS  Google Scholar 

  6. A. M. Peters, M. J. Myers, S. Mohammadtaghi, M. Mubashar, and R. T. Mathie. Bidirectional transport of iminodiacetic organic anion analogues between plasma and hepatocyte. Eur. J. Nucl. Med. 25:766–773 (1998).

    Article  PubMed  CAS  Google Scholar 

  7. N. H. Hendrikse, F. Kuipers, C. Meijer, R. Havinga, C. M. Bijleveld, W. T. van der Graaf, W. Vaalburg, and E. G. de Vries. In vivo imaging of hepatobiliary transport function mediated by multidrug resistance associated protein and P-glycoprotein. Cancer Chemother. Pharmacol. 54:131–138 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. S. Araikum, T. Mdaka, J. D. Esser, and M. Zuckerman. Hepatobiliary kinetics of technetium-99m-IDA analogs: quantification by linear systems theory. J. Nucl. Med. 37:1323–1330 (1996).

    PubMed  CAS  Google Scholar 

  9. G. Ghibellini, B. M. Johnson, R. J. Kowalsky, W. D. Heizer, and K. L. R. Brouwer. A novel method for the determination of biliary clearance in humans. AAPS J. 6:e33 (2004).

    Article  PubMed  Google Scholar 

  10. J. Kartenbeck, U. Leuschner, R. Mayer, and D. Keppler. Absence of the canalicular isoform of the MRP gene-encoded conjugate export pump from the hepatocytes in Dubin–Johnson syndrome. Hepatology. 23:1061–1066 (1996).

    PubMed  CAS  Google Scholar 

  11. S. Toh, M. Wada, T. Uchiumi, A. Inokuchi, Y. Makino, Y. Horie, Y. Adachi, S. Sakisaka, and M. Kuwano. Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin–Johnson syndrome. Am. J. Hum. Genet. 64:739–746 (1999).

    Article  PubMed  CAS  Google Scholar 

  12. H. Tsujii, J. Konig, D. Rost, B. Stockel, U. Leuschner, and D. Keppler. Exon-intron organization of the human multidrug-resistance protein 2 (MRP2) gene mutated in Dubin–Johnson syndrome. Gastroenterology. 117:653–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. C. C. Paulusma, M. Kool, P. J. Bosma, G. L. Scheffer, F. ter Borg, R. J. Scheper, G. N. Tytgat, P. Borst, F. Baas, and R. P. Oude Elferink. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin–Johnson syndrome. Hepatology. 25:1539–1542 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. S. Kajihara, A. Hisatomi, T. Mizuta, T. Hara, I. Ozaki, I. Wada, and K. Yamamoto. A splice mutation in the human canalicular multispecific organic anion transporter gene causes Dubin–Johnson syndrome. Biochem. Biophys. Res. Commun. 253:454–457 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. V. Keitel, A. T. Nies, M. Brom, J. Hummel-Eisenbeiss, H. Spring, and D. Keppler. A common Dubin–Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2). Am. J. Physiol. Gastrointest. Liver Physiol. 284:G165–G174 (2003).

    PubMed  CAS  Google Scholar 

  16. J. Konig, D. Rost, Y. Cui, and D. Keppler. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 29:1156–1163 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. B. M. Johnson, P. Zhang, J. D. Schuetz, and K. L. R. Brouwer. Characterization of transport protein expression in multidrug resistance-associated protein (mrp) 2-deficient rats. Drug Metab. Dispos. 34:556–562 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. M. G. Donner, and D. Keppler. Up-regulation of basolateral multidrug resistance protein 3 (Mrp3) in cholestatic rat liver. Hepatology. 34:351–359 (2001).

    Article  PubMed  CAS  Google Scholar 

  19. A. Guhlmann, K. Krauss, F. Oberdorfer, T. Siegel, P. H. Scheuber, J. Muller, B. Csuk-Glanzer, S. Ziegler, H. Ostertag, and D. Keppler. Noninvasive assessment of hepatobiliary and renal elimination of cysteinyl leukotrienes by positron emission tomography. Hepatology. 21:1568–1575 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. H. Okuda, R. Nunes, S. Vallabhajosula, A. Strashun, S. J. Goldsmith, and P. D. Berk. Studies of the hepatocellular uptake of the hepatobiliary scintiscanning agent 99mTc-DISIDA. J. Hepatol. 3:251–259 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. Choletec. Kit for the Preparation of Technetium Tc 99m Mebrofenin. Bracco Diagnostic, Inc., Princeton (NJ).

  22. Y. Cui, J. Konig, I. Leier, U. Buchholz, and D. Keppler. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J. Biol. Chem. 276:9626–9630 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. R. J. Kowalsky, and S. W. Falen. Radiopharmaceuticals in Nuclear Pharmacy and Nuclear Medicine. American Pharmacists Association, Washington, D.C., 2004.

    Google Scholar 

  24. D. A. Bow, J. L. Perry, J. D. Simon, and J. B. Pritchard. The impact of plasma protein binding on the renal transport of organic anions. J. Pharmacol. Exp. Ther. 316:349–355 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. K. Ito, C. J. Oleschuk, C. Westlake, M. Z. Vasa, R. G. Deeley, and S. P. Cole. Mutation of Trp1254 in the multispecific organic anion transporter, multidrug resistance protein 2 (MRP2) (ABCC2), alters substrate specificity and results in loss of methotrexate transport activity. J. Biol. Chem. 276:38108–38114 (2001).

    PubMed  CAS  Google Scholar 

  26. C. J. Oleschuk, R. G. Deeley, and S. P. Cole. Substitution of Trp1242 of TM17 alters substrate specificity of human multidrug resistance protein 3. Am. J. Physiol. Gastrointest. Liver Physiol. 284:G280–G289 (2003).

    PubMed  CAS  Google Scholar 

  27. E. M. Leslie, Q. Mao, C. J. Oleschuk, R. G. Deeley, and S. P. Cole. Modulation of multidrug resistance protein 1 (MRP1/ABCC1) transport and atpase activities by interaction with dietary flavonoids. Mol. Pharmacol. 59:1171–1180 (2001).

    PubMed  CAS  Google Scholar 

  28. A. Geier, M. Wagner, C. G. Dietrich, and M. Trauner. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim. Biophys. Acta. 1773:283–308 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. S. R. Vavricka, J. Van Montfoort, H. R. Ha, P. J. Meier, and K. Fattinger. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 36:164–172 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. B. Hagenbuch, and P. J. Meier. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 447:653–665 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. S. N. Barnes, L. M. Aleksunes, L. Augustine, G. L. Scheffer, M. J. Goedken, A. B. Jakowski, I. M. Pruimboom-Brees, N. J. Cherrington, and J. E. Manautou. Induction of hepatobiliary efflux transporters in acetaminophen-induced acute liver failure cases. Drug Metab. Dispos. 35:1963–1969 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. P. Chandra, and K. L. R. Brouwer. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm. Res. 21:719–735 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. J. Konig, A. T. Nies, Y. Cui, I. Leier, and D. Keppler. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta. 1461:377–394 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. B. Stockel, J. Konig, A. T. Nies, Y. Cui, M. Brom, and D. Keppler. Characterization of the 5’-flanking region of the human multidrug resistance protein 2 (MRP2) gene and its regulation in comparison with the multidrug resistance protein 3 (MRP3) gene. Eur. J. Biochem. 267:1347–1358 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grant R01 GM41935 and grant RR00046 from the GCRC program of the Division of Research Resources. Giulia Ghibellini was the recipient of an American Foundation for Pharmaceutical Education Predoctoral Fellowship, Elaine M. Leslie was the recipient of a Postdoctoral Fellowship from the Canadian Institutes of Health Research (CIHR).

Drs. Richard Kowalsky, Daniel Bow, Joe Polli and Brendan Johnson are gratefully acknowledged for their expertise and help in the execution of the in vitro and in vivo studies. Drs. Susan P.C. Cole and Roger G. Deeley (Queen’s University) kindly provided the MRP2 and MRP3 vectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim L. R. Brouwer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghibellini, G., Leslie, E.M., Pollack, G.M. et al. Use of Tc-99m Mebrofenin as a Clinical Probe to Assess Altered Hepatobiliary Transport: Integration of In Vitro, Pharmacokinetic Modeling, and Simulation Studies. Pharm Res 25, 1851–1860 (2008). https://doi.org/10.1007/s11095-008-9597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9597-0

KEY WORDS

Navigation