Skip to main content

Advertisement

Log in

Involvement of P-glycoprotein, Multidrug Resistance Protein 2 and Breast Cancer Resistance Protein in the Transport of Belotecan and Topotecan in Caco-2 and MDCKII Cells

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the underlying mechanism of low bioavailabilities of the water-soluble camptothecin derivatives, belotecan and topotecan.

Methods

The bioavailability of belotecan and topotecan in rats was determined following oral administration of each drug at a dose of 5 mg/kg body weight. The vectorial transport of each drug was measured in Caco-2 and engineered MDCK II cells.

Results

The bioavailability of belotecan (11.4%) and topotecan (32.0%) in rats was increased to 61.5% and 40.8%, respectively, by the preadministration of CsA at a dose of 40 mg/kg. Contrary to the absorptive transport, the secretory transport of these drugs across the Caco-2 cell monolayer was concentration-dependent, saturable, and significantly inhibited by the cis presence of verapamil (a P-gp substrate), MK-571 (an MRP inhibitor), bromosulfophthalein (BSP, an MRP2 inhibitor), fumitremorgin C (FTC, a BCRP inhibitor) and cyclosporine A (CsA, an inhibitor of P-gp and BCRP, and a substrate of P-gp) suggesting the involvement of these transporters, which could be further confirmed in MDCKII/P-gp, MDCKII/MRP2 and MDCKII/BCRP cells.

Conclusion

The involvement of secretory transporters P-gp, MRP2 and BCRP, particularly for belotecan, as well as a low passive permeability, appears to be responsible for the low bioavailability of belotecan and topotecan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

BCRP:

breast cancer resistance protein

BSP:

bromosulfophtahlein

CPT:

20-(s)-camptothecin

CsA:

cyclosporine A

DMEM:

Dulbecco’s modified Eagle’s medium

FTC:

fumitremorgin

HBSS:

Hank’s balanced salt solution

HEPES:

N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid

MDCK:

Mardine–Darby canine kidney

MK-571:

3-([{3-(2-[7-chloro-2-quinolinyl]ethyl)phenyl}-{(3-dimethylamino-3-oxopropyl)-thio}-methyl]-thio) propanoic acid

MRP2:

multidrug resistance protein 2

P-gp:

P-glycoprotein

SD:

Sprague–Dawley

TEER:

transepithelial electrical resistance

References

  1. R. Kim, N. Hirabayashi, M. Nishiyama, K. Jinushi, T. Toge, and K. Okada. Experimental studies on biochemical modulation targeting topoisomerase I and II in human tumor xenografts in nude mice. Int. J. Cancer. 50:760–766 (1992) doi:10.1002/ijc.2910500516.

    Article  PubMed  CAS  Google Scholar 

  2. W. J. Slichenmyer, E. K. Rowinsky, R. C. Donehower, and S. H. Kaufmann. The current status of camptothecin analogues as antitumor agents. J. Natl. Cancer Inst. 85:271–291 (1993) doi:10.1093/jnci/85.4.271.

    Article  PubMed  CAS  Google Scholar 

  3. A. Tanizawa, A. Fujimori, Y. Fujimori, and Y. Pommier. Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J. Natl. Cancer Inst. 86:836–842 (1994) doi:10.1093/jnci/86.11.836.

    Article  PubMed  CAS  Google Scholar 

  4. R. P. Hertzberg, M. J. Caranfa, K. G. Holden, D. R. Jakas, G. Gallagher, M. R. Mattern, S. M. Mong, J. O. Bartus, R. K. Johnson, and W. D. Kingsbury. Modification of the hydroxyl lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J. Med. Chem. 32:715–720 (1989) doi:10.1021/jm00123a038.

    Article  PubMed  CAS  Google Scholar 

  5. Y. H. Hsiang, L. F. Liu, M. E. Wall, M. C. Wani, A. W. Nicholas, G. Manikumar, S. Kirschenbaum, R. Silber, and M. Potmesil. DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Res. 49:4385–4389 (1989).

    PubMed  CAS  Google Scholar 

  6. A. K. Lalloo, F. R. Luo, A. Guo, P. V. Paranjpe, S. H. Lee, V. Vyas, E. Rubin, and P. J. Sinko. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2). BMC Med. 2:16–27 (2004) doi:10.1186/1741-7015-2-16.

    Article  PubMed  Google Scholar 

  7. S. S. Jew, M. G. Kim, H. J. Kim, E. Y. Rho, H. G. Park, J. K. Kim, H. J. Han, and H. Lee. Synthesis and in vitro cytotoxicity of C(20)(RS)-camptothecin analogues modified at both B (or A) and E ring. Bioorg. Med. Chem. Lett. 8:1797–1800 (1998) doi:10.1016/S0960-894X(98)00317-5.

    Article  PubMed  CAS  Google Scholar 

  8. J. H. Lee, J. M. Lee, J. K. Kim, S. K. Ahn, S. J. Lee, M. Y. Kim, S. S. Jew, J. G. Park, and C. I. Hong. Antitumor activity of 7-[2-(N-isopropylamino)ethyl]-(20s)-camptothecin, CKD-602, as a potent DNA topoisomorase I inhibitor. Arch. Pharm. Res. 21:581–590 (1998).

    PubMed  CAS  Google Scholar 

  9. J. H. Lee, J. M. Lee, K. H. Lim, J. K. Kim, S. K. Ahn, Y. J. Bang, and C. I. Hong. Preclinical and phase I clinical studies with CKD-602, a novel camptothecin derivative. Ann. N. Y. Acad. Sci. 922:324–325 (2000).

    PubMed  CAS  Google Scholar 

  10. G. Del Bino, P. Lassota, and Z. Darzynkiewicz. The S-phase cytotoxicity of camptothecin. Exp. Cell Res. 193:27–35 (1991) doi:10.1016/0014-4827(91)90534-2.

    Article  PubMed  CAS  Google Scholar 

  11. P. J. Houghton, P. J. Cheshire, J. D. Hallman II, L. Lutz, H. S. Friedman, M. K. Danks, and J. A. Houghton. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother. Pharmacol. 36:393–403 (1995) doi:10.1007/BF00686188.

    Article  PubMed  CAS  Google Scholar 

  12. C. J. Gerrits, H. Burris, J. H. Schellens, J. R. Eckardt, A. S. Planting, M. E. van der Burg, G. I. Rodriguez, W. J. Loos, V. van Beurden, I. Hudson, S. Fields, D. D. Von Hoff, and J. Verweij. Oral topotecan given once or twice daily for ten days: a phase I pharmacology study in adult patients with solid tumors. Clin. Cancer Res. 4:1153–1158 (1998).

    PubMed  CAS  Google Scholar 

  13. J. H. Schellens, G. J. Creemers, J. H. Beijnen, H. Rosing, M. de Boer-Dennert, M. McDonald, B. Davies, and J. Verweij. Bioavailability and pharmacokinetics of oral topotecan: a new topoisomerase I inhibitor. Br. J. Cancer. 73:1268–1271 (1996).

    PubMed  CAS  Google Scholar 

  14. W. C. Zamboni, L. C. Bowman, M. Tan, V. M. Santana, P. J. Houghton, W. H. Meyer, C. B. Pratt, R. L. Heideman, A. J. Gajjar, A. S. Pappo, and C. F. Stewart. Interpatient variability in bioavailability of the intravenous formulation of topotecan given orally to children with recurrent solid tumors. Cancer Chemother. Pharmacol. 43:454–60 (1999) doi:10.1007/s002800050923.

    Article  PubMed  CAS  Google Scholar 

  15. E. Gupta, V. Vyas, F. Ahmed, P. Sinko, T. Cook, and E. Rubin. Pharmacokinetics of orally administered camptothecins. Ann. N. Y. Acad. Sci. 922:195–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  16. E. Gupta, F. Luo, A. Law, S. Ramanathan, V. Vyas, E. Rubin, and P. Sinko. The intestinal absorption of camptothecin, a highly lipophilic drug, across Caco-2 cells is mediated by active transporter(s). Anticancer Res. 20:1013–1016 (2000).

    PubMed  CAS  Google Scholar 

  17. J. H. Schellens, M. Maliepaard, R. J. Scheper, G. L. Scheffer, J. W. Jonker, J. W. Smit, J. H. Beijnen, and A. H. Schinkel. Transport of topoisomerase I inhibitor by the breast cancer resistance protein potential clinical implications. Ann. N. Y. Acad. Sci. 922:188–194 (2000).

    PubMed  CAS  Google Scholar 

  18. C. M. F. Kruijtzer, J. H. Beijnen, H. Rosing, W. W. Bokkel, M. Schot, R. C. Jewell, E. M. Panl, and J. H. M. Schellens. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20:2943–2950 (2002) doi:10.1200/JCO.2002.12.116.

    Article  PubMed  CAS  Google Scholar 

  19. A. Gupta, Y. Dai, R. R. Vethanayagam, M. F. Herbert, K. E. Thummel, J. D. Unadkat, D. D. Ross, and Q. Mao. Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer Chemother. Pharmacol. 58:374–383 (2006) doi:10.1007/s00280-005-0173-6.

    Article  PubMed  CAS  Google Scholar 

  20. F. R. Luo, P. V. Paranjpe, A. Guo, E. Rubin, and P. Sinko. Intestinal transport of irinotecon in Caco-2 cells and MDCKII cells overexpressing efflux transporters PGP, cMOAT, and MRP1. Drug Metab. Dispos. 30:763–770 (2002) doi:10.1124/dmd.30.7.763.

    Article  PubMed  CAS  Google Scholar 

  21. X. Sha, and X. Fang. Transport characteristics of 9-nitrocamptothecin in the human intestinal cell line Caco-2 and everted gut sacs. Int. J. Pharm. 272:161–171 (2004) doi:10.1016/j.ijpharm.2003.12.023.

    Article  PubMed  CAS  Google Scholar 

  22. E. M. Namkoong, I. W. Kim, D. D. Kim, S. J. Chung, and C. K. Shim. Effect of probenecid on the biliary excretion of belotecan. Arch. Pharm. Res. 30:1482–1488 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. H. Li, S. J. Chung, H. S. Kim, J. W. Lee, and C. K. Shim. The transport of a reversible proton pump antagonist, 5,6-dimethyl-2-(4-fluorophenylamino)-4-(1-methyl-1,2,3,4-tetrahydroisoquinoline-2-yl) pyrimidine hydrochloride (YH1885), across Caco-2 cell monolayers. Drug Metab. Dispos. 29:54–59 (2001).

    PubMed  CAS  Google Scholar 

  24. M. H. Silbermann, A. W. Boersma, A. L. Janssen, R. J. Scheper, H. Herweijer, and K. Nooter. Effects of cyclosporin A and verapamil on the intracellular daunorubicin accumulation in Chinese hamster ovary cells with increasing levels of drug-resistance. Int. J. Cancer. 44:722–726 (1989) doi:10.1002/ijc.2910440428.

    Article  PubMed  CAS  Google Scholar 

  25. M. Horikawa, Y. Kato, C. A. Tyson, and Y. Sugiyama. The potential for an interaction between MRP2 (ABCC2) and various therapeutic agents: probenecid as a candidate inhibitor of the biliary excretion of irinotecan metabolites. Drug Metab. Pharmacokinet. 17:23–33 (2002) doi:10.2133/dmpk.17.23.

    Article  PubMed  CAS  Google Scholar 

  26. J. Kőnig, A. T. Nies, Y. Cui, I. Leier, and D. Keppler. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim. Biophys. Acta. 1461:377–394 (1999) doi:10.1016/S0005-2736(99)00169-8.

    Article  PubMed  Google Scholar 

  27. S. K. Rabindran, H. He, M. Singh, E. Brown, K. I. Collins, T. Annable, and L. M. Greenberger. Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res. 58:5850–5858 (1998).

    PubMed  CAS  Google Scholar 

  28. J. Y. Cho, H. B. Seo, K. S. Yu, K. S. Bae, S. Y. Yi, I. J. Jang, and S. G. Shin. Simple and sensitive determination of the new antitumor drug CKD-602 in human plasma by liquid chromatography. J. Chromatogr. B. 784:25–31 (2003) doi:10.1016/S1570-0232(02)00750-X.

    Article  CAS  Google Scholar 

  29. A. M. Vali, B. Shafaghi, and S. Dadashzadeh. Simple and sensitive high performance liquid chromatographic method for the simultaneous quantitation of the lactone and carboxylate forms of topotecan in human plasma. J. Chromatogr. B. 818:205–212 (2005) doi:10.1016/j.jchromb.2004.12.027.

    Article  CAS  Google Scholar 

  30. X. Zhou, X. Yang, P. Wanf, R. A. Coburn, and M. E. Morris. Effect of dihydropyridiens and pyridines on multidrug resistance mediated by breast cancer resistance protein: in vitro and in vivo studies. Drug Metab. Dispos. 33:1220–1228 (2005) doi:10.1124/dmd.104.003558.

    Article  PubMed  CAS  Google Scholar 

  31. C. B. Hendricks, E. K. Rowinsky, L. B. Grochow, R. C. Donehower, and S. H. Kaufmann. Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res. 52:2268–2278 (1992).

    PubMed  CAS  Google Scholar 

  32. J. W. Jonker, J. W. Smit, R. F. Brinkhuis, M. Maliepaard, J. H. Beijnen, J. H. M. Schellens, and A. H. Schinkel. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J. Natl. Cancer Inst. 92:1651–1656 (2000) doi:10.1093/jnci/92.20.1651.

    Article  PubMed  CAS  Google Scholar 

  33. J. Taipalesuu, H. Tornblom, G. Lindberg, C. Einarsson, F. Sjoqvst, H. Melhus, P. Garberg, B. Sjostrom, B. Lundgren, and P. Artursson. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2cell monolayers. J. Pharmacol. Exp. Ther. 299:164–170 (2001).

    Google Scholar 

  34. G. Merino, A. I. Alvarez, M. M. Pulido, A. J. Molina, A. H. Schinkel, and J. G. Prieto. Breast Cancer Resistance Protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their oral availability, pharmacokinetics and milk secretion. Drug Metab. Dispos. 34:690–693 (2006) doi:10.1124/dmd.105.008219.

    Article  PubMed  CAS  Google Scholar 

  35. X. Y. Chu, Y. Kato, and Y. Sugiyama. Possible involvement of P-glycoprotein in biliary excretion of CPT-11 in rats. Drug Metab. Dispos. 27:440–441 (1999).

    PubMed  CAS  Google Scholar 

  36. N. Petri, C. Tannergreen, D. Rungstad, and H. Lennernäs. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm. Res. 21:1398–1404 (2004) doi:10.1023/B:PHAM.0000036913.90332.b1.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. Borst at The Netherlands Cancer Institute (Amsterdam, The Netherlands) for providing MDCKII/wt, MDCKII/P-gp, MDCKII/MRP2, and MDCKII/BCRP cells. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the National Research Lab. Program funded by the Ministry of Science and Technology (No.R0A2006000102900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Koo Shim.

Additional information

Hong Li and Hyo-Eon Jin have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Jin, HE., Kim, W. et al. Involvement of P-glycoprotein, Multidrug Resistance Protein 2 and Breast Cancer Resistance Protein in the Transport of Belotecan and Topotecan in Caco-2 and MDCKII Cells. Pharm Res 25, 2601–2612 (2008). https://doi.org/10.1007/s11095-008-9678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9678-0

KEY WORDS

Navigation