Skip to main content
Log in

Transcorneal Permeation of l- and d-Aspartate Ester Prodrugs of Acyclovir: Delineation of Passive Diffusion Versus Transporter Involvement

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the contribution of amino acid transporters in the transcorneal permeation of the aspartate (Asp) ester acyclovir (ACV) prodrug.

Methods

Physicochemical characterization, solubility and stability of acyclovir l-aspartate (l-Asp-ACV) and acyclovir d-aspartate (d-Asp-ACV) were studied. Transcorneal permeability was evaluated across excised rabbit cornea.

Results

Solubility of l-Asp-ACV and d-Asp-ACV were about twofold higher than that of ACV. The prodrugs demonstrated greater stability under acidic conditions. Calculated pKa and logP values for both prodrugs were identical. Transcorneal permeability of l-Asp-ACV \(\left( {{\text{12}}{\text{.1}} \pm {\text{1}}{\text{.48}} \times {\text{10}}^{ - {\text{6}}} {{{\text{cm}}} \mathord{\left/ {\vphantom {{{\text{cm}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}} \right)\) was fourfold higher than d-Asp-ACV \(\left( {{\text{3}}{\text{.12}} \pm {\text{0}}{\text{.36}} \times {\text{10}}^{ - {\text{6}}} {{{\text{cm}}} \mathord{\left/ {\vphantom {{{\text{cm}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}} \right)\) and ACV \(\left( {{\text{3}}{\text{.25}} \pm {\text{0}}{\text{.56}} \times {\text{10}}^{ - {\text{6}}} {{{\text{cm}}} \mathord{\left/ {\vphantom {{{\text{cm}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}} \right)\). ACV generation during the transport process was minimal. l-Asp-ACV transport was sodium and energy dependent but was not inhibited by glutamic acid. Addition of BCH, a specific B0,+ and L amino acid transporter inhibitor, decreased transcorneal l-Asp-ACV permeability to \({\text{2}}{\text{.66}} \pm {\text{0}}{\text{.21}} \times {\text{10}}^{ - {\text{6}}} {{{\text{cm}}} \mathord{\left/ {\vphantom {{{\text{cm}}} {\text{s}}}} \right. \kern-\nulldelimiterspace} {\text{s}}}\). l-Asp-ACV and d-Asp-ACV did not demonstrate significant difference in stability in ocular tissue homogenates.

Conclusion

The results demonstrate that enhanced transport of l-Asp-ACV is as a result of corneal transporter involvement (probably amino acid transporter B0,+) and not as a result of changes in physicochemical properties due to prodrug derivatization (permeability of d-Asp-ACV and ACV were not significantly different).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. P. Kaur, and R. Smitha. Penetration enhancers and ocular bioadhesives: two new avenues for ophthalmic drug delivery. Drug Dev. Ind. Pharm. 28:353–369 (2002). doi:10.1081/DDC-120002997.

    Article  PubMed  CAS  Google Scholar 

  2. E. Mannermaa, K. S. Vellonen, and A. Urtti. Drug transport in corneal epithelium and blood–retina barrier: emerging role of transporters in ocular pharmacokinetics. Adv. Drug Deliv. Rev. 58:1136–1163 (2006). doi:10.1016/j.addr.2006.07.024.

    Article  PubMed  CAS  Google Scholar 

  3. D. A. Jabs. Acyclovir for recurrent herpes simplex virus ocular disease. N. Engl. J. Med. 339:340–341 (1998). doi:10.1056/NEJM199807303390510.

    Article  PubMed  CAS  Google Scholar 

  4. S. Guess, D. U. Stone, and J. Chodosh. Evidence-based treatment of herpes simplex virus keratitis: a systematic review. Ocul. Surf. 5:240–250 (2007).

    PubMed  Google Scholar 

  5. K. R. Wilhelmus. The treatment of herpes simplex virus epithelial keratitis. Trans. Am. Ophthalmol. Soc. 98:505–532 (2000).

    PubMed  CAS  Google Scholar 

  6. K. R. Wilhelmus. Therapeutic interventions for herpes simplex virus epithelial keratitis. Cochrane Database Syst. Rev. CD002898 (2007).

  7. P. Chetoni, S. Rossi, S. Burgalassi, D. Monti, S. Mariotti, and M. F. Saettone. Comparison of liposome-encapsulated acyclovir with acyclovir ointment: ocular pharmacokinetics in rabbits. J Ocul Pharmacol Ther. 20:169–177 (2004). doi:10.1089/108076804773710849.

    Article  PubMed  CAS  Google Scholar 

  8. S. Ghosh, V. Jhanji, E. Lamoureux, H. R. Taylor, and R. B. Vajpayee. Acyclovir therapy in prevention of recurrent herpetic keratitis following penetrating keratoplasty. Am. J. Ophthalmol. 145:198–202 (2008). doi:10.1016/j.ajo.2007.10.005.

    Article  PubMed  CAS  Google Scholar 

  9. S. Majumdar, Y. E. Nashed, K. Patel, R. Jain, M. Itahashi, D. M. Neumann, J. M. Hill, and A. K. Mitra. Dipeptide monoester ganciclovir prodrugs for treating HSV-1-induced corneal epithelial and stromal keratitis: in vitro and in vivo evaluations. J. Ocul. Pharmacol. Ther. 21:463–474 (2005). doi:10.1089/jop.2005.21.463.

    Article  PubMed  CAS  Google Scholar 

  10. S. Y. Lee. Herpes simplex virus ocular infections. Drugs Today (Barc). 34:241–249 (1998). doi:10.1358/dot.1998.34.3.485179.

    Article  CAS  Google Scholar 

  11. A. Simmons. Clinical manifestations and treatment considerations of herpes simplex virus infection. J. Infect Dis. 186(Suppl 1):S71–S77 (2002). doi:10.1086/342967.

    Article  PubMed  Google Scholar 

  12. M. Fresta, G. Fontana, C. Bucolo, G. Cavallaro, G. Giammona, and G. Puglisi. Ocular tolerability and in vivo bioavailability of poly(ethylene glycol) (PEG)-coated polyethyl-2-cyanoacrylate nanosphere-encapsulated acyclovir. J. Pharm. Sci. 90:288–97 (2001). doi:10.1002/1520-6017(200103)90:3<288::AID-JPS4>3.0.CO;2-5.

    Article  PubMed  CAS  Google Scholar 

  13. S. L. Law, K. J. Huang, and C. H. Chiang. Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J. Control Release. 63:135–140 (2000). doi:10.1016/S0168-3659(99)00192-3.

    Article  PubMed  CAS  Google Scholar 

  14. B. Wang, W. Teng, and X. Han. An experimental study of a new route for acyclovir administration for anti-keratitis therapeutic treatment. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 14:379–381 (2000).

    PubMed  CAS  Google Scholar 

  15. S. Majumdar, K. Hippalgaonkar, and M. A. Repka. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int. J. Pharm. 348:175–178 (2008). doi:10.1016/j.ijpharm.2007.08.017.

    Article  PubMed  CAS  Google Scholar 

  16. S. Majumdar, S. Duvvuri, and A. K. Mitra. Membrane transporter/receptor-targeted prodrug design: strategies for human and veterinary drug development. Adv. Drug Deliv. Rev. 56:1437–1452 (2004). doi:10.1016/j.addr.2004.02.006.

    Article  PubMed  CAS  Google Scholar 

  17. M. Palacin, R. Estevez, J. Bertran, and A. Zorzano. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78:969–1054 (1998).

    PubMed  CAS  Google Scholar 

  18. B. Anand, Y. Nashed, and A. Mitra. Novel dipeptide prodrugs of acyclovir for ocular herpes infections: Bioreversion, antiviral activity and transport across rabbit cornea. Curr Eye Res. 26:151–163 (2003). doi:10.1076/ceyr.26.3.151.14893.

    Article  PubMed  Google Scholar 

  19. B. S. Anand, and A. K. Mitra. Mechanism of corneal permeation of l-valyl ester of acyclovir: targeting the oligopeptide transporter on the rabbit cornea. Pharm. Res. 19:1194–1202 (2002). doi:10.1023/A:1019806411610.

    Article  PubMed  CAS  Google Scholar 

  20. M. E. Ganapathy, and V. Ganapathy. Amino acid transporter ATB0,+ as a delivery system for drugs and prodrugs. Curr. Drug Targets Immune. Endocr. Metabol. Disord. 5:357–364 (2005). doi:10.2174/156800805774912953.

    Article  PubMed  CAS  Google Scholar 

  21. T. Hatanaka, M. Haramura, Y. J. Fei, S. Miyauchi, C. C. Bridges, P. S. Ganapathy, S. B. Smith, V. Ganapathy, and M. E. Ganapathy. Transport of amino acid-based prodrugs by the Na+- and Cl(−) -coupled amino acid transporter ATB0,+ and expression of the transporter in tissues amenable for drug delivery. J. Pharmacol. Exp. Ther. 308:1138–1147 (2004). doi:10.1124/jpet.103.057109.

    Article  PubMed  CAS  Google Scholar 

  22. K. Patel, S. Trivedi, S. Luo, X. Zhu, D. Pal, E. R. Kern, and A. K. Mitra. Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. Int. J. Pharm. 305:75–89 (2005). doi:10.1016/j.ijpharm.2005.08.024.

    Article  PubMed  CAS  Google Scholar 

  23. C. Santos, J. Morais, L. Gouveia, E. de Clercq, C. Pannecouque, C. U. Nielsen, B. Steffansen, R. Moreira, and P. Gomes. Dipeptide derivatives of AZT: synthesis, chemical stability, activation in human plasma, hPEPT1 affinity, and antiviral activity. ChemMedChem. 3:970–978 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. B. S. Anand, S. Katragadda, Y. E. Nashed, and A. K. Mitra. Amino acid prodrugs of acyclovir as possible antiviral agents against ocular HSV-1 infections: interactions with the neutral and cationic amino acid transporter on the corneal epithelium. Curr. Eye Res. 29:153–166 (2004). doi:10.1080/02713680490504614.

    Article  PubMed  CAS  Google Scholar 

  25. L. M. Beauchamp, G. F. Orr, P. de Miranda, T. Burnette, and T. A. Krenitsky. Amino acid ester prodrugs of acyclovir. Antivir. Chem. Chemother. 3:157–164 (1992).

    CAS  Google Scholar 

  26. United States Pharmacopeial Commission. The United States Pharmacopoeia XXX, NF XXV, United States Pharmacopeial Commission, Inc., Rockville, MD, 2006, 806–807.

  27. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254 (1976). doi:10.1016/0003-2697(76)90527-3.

    Article  PubMed  CAS  Google Scholar 

  28. B. Garre, K. Shebany, A. Gryspeerdt, K. Baert, K. van der Meulen, H. Nauwynck, P. Deprez, P. De Backer, and S. Croubels. Pharmacokinetics of acyclovir after intravenous infusion of acyclovir and after oral administration of acyclovir and its prodrug valacyclovir in healthy adult horses. Antimicrob. Agents Chemother. 51:4308–4314 (2007). doi:10.1128/AAC.00116-07.

    Article  PubMed  CAS  Google Scholar 

  29. B. Jain-Vakkalagadda, S. Dey, D. Pal, and A. K. Mitra. Identification and functional characterization of a Na+-independent large neutral amino acid transporter, LAT1, in human and rabbit cornea. Invest. Ophthalmol. Vis. Sci. 44:2919–2927 (2003). doi:10.1167/iovs.02-0907.

    Article  PubMed  Google Scholar 

  30. B. Jain-Vakkalagadda, D. Pal, S. Gunda, Y. Nashed, V. Ganapathy, and A. K. Mitra. Identification of a Na+-dependent cationic and neutral amino acid transporter, B(0,+), in human and rabbit cornea. Mol. Pharm. 1:338–346 (2004). doi:10.1021/mp0499499.

    Article  PubMed  CAS  Google Scholar 

  31. C. Yang, H. Gao, and A. K. Mitra. Chemical stability, enzymatic hydrolysis, and nasal uptake of amino acid ester prodrugs of acyclovir. J. Pharm. Sci. 90:617–624 (2001). doi::10.1002/1520-6017(200105)90:5<617::AID-JPS1018>3.0.CO;2-5.

    Article  PubMed  CAS  Google Scholar 

  32. H. Bundgaard, E. Jensen, and E. Falch. Water-soluble, solution-stable, and biolabile N-substituted (aminomethyl)benzoate ester prodrugs of acyclovir. Pharm. Res. 8:1087–1093 (1991). doi:10.1023/A:1015837931256.

    Article  PubMed  CAS  Google Scholar 

  33. C. G. Jordan. How an increase in the carbon chain length of the ester moiety affects the stability of a homologous series of oxprenolol esters in the presence of biological enzymes. J. Pharm. Sci. 87:880–885 (1998). doi:10.1021/js970280p.

    Article  PubMed  CAS  Google Scholar 

  34. S. C. Chang, and V. H. Lee. Influence of chain length on the in vitro hydrolysis of model ester prodrugs by ocular esterases. Curr. Eye Res. 2:651–656 (1982). doi:10.3109/02713688209019993.

    Article  PubMed  Google Scholar 

  35. D. S. Chien, H. Sasaki, H. Bundgaard, A. Buur, and V. H. Lee. Role of enzymatic lability in the corneal and conjunctival penetration of timolol ester prodrugs in the pigmented rabbit. Pharm. Res. 8:728–733 (1991). doi:10.1023/A:1015845916293.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by NIH grant numbers P20RR021929, from the National Center for Research Resources, and EY018426-01 from the National Eye Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyajit Majumdar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S-1

Proton NMR (500 MHz) of l-Asp-ACV in DMSO (DOC 299 KB)

Fig. S-2

Proton NMR (500 MHz) of d-Asp-ACV in DMSO (DOC 81 KB)

Fig. S-3

13C NMR of l-Asp-ACV in DMSO (DOC 181 KB)

Fig. S-4

13C DEPT NMR of d-Asp-ACV in DMSO (DOC 75.5 KB)

Fig. S-5

13C NMR of d-Asp-ACV (DOC 88.5 KB)

Fig. S-6

Proton NMR of intermediate compound (3l-Ester of ACV) (DOC 184 KB)

Fig. S-7

Proton NMR of intermediate compound (3d-Ester) (DOC 78.5 KB)

Fig. S-8

13C NMR of intermediate compound (3l-ester) (DOC 82 KB)

Fig. S-9

13C NMR of intermediate compound (3d-ester) in DMSO (DOC 79 KB)

Fig. S-10

13C DEPT NMR of intermediate compound (3d-ester) in DMSO (DOC 78 KB)

Fig. S-11

LC-MS data for d-Asp-ACV and l-Asp-ACV (DOC 518 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumdar, S., Hingorani, T., Srirangam, R. et al. Transcorneal Permeation of l- and d-Aspartate Ester Prodrugs of Acyclovir: Delineation of Passive Diffusion Versus Transporter Involvement. Pharm Res 26, 1261–1269 (2009). https://doi.org/10.1007/s11095-008-9730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9730-0

KEY WORDS

Navigation