Skip to main content
Log in

Accelerated Blood Clearance Phenomenon Upon Repeated Injection of PEG-modified PLA-nanoparticles

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

We recently developed prostaglandin E1 (PGE1)-encapsulated nanoparticles, prepared with a poly(lactide) homopolymer (PLA, Mw = 17,500) and monomethoxy poly(ethyleneglycol)-PLA block copolymer (PEG-PLA) (NP-L20). In this study, we tested whether the accelerated blood clearance (ABC) phenomenon is observed with NP-L20 and other PEG-modified PLA-nanoparticles in rats.

Methods

The plasma levels of PGE1 and anti-PEG IgM antibody were determined by EIA and ELISA, respectively.

Results

Second injections of NP-L20 were cleared much more rapidly from the circulation than first injections, showing that the ABC phenomenon was induced. This ABC phenomenon, and the accompanying induction of anti-PEG IgM antibody production, was optimal at a time interval of 7 days between the first and second injections. Compared to NP-L20, NP-L33s that were prepared with PLA (Mw = 28,100) and have a smaller particle size induced production of anti-PEG IgM antibody to a lesser extent. NP-L20 but not NP-L33s gave rise to the ABC phenomenon with a time interval of 14 days. NP-L33s showed a better sustained-release profile of PGE1 than NP-L20.

Conclusions

This study revealed that the ABC phenomenon is induced by PEG-modified PLA-nanoparticles. We consider that NP-L33s may be useful clinically for the sustained-release and targeted delivery of PGE1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

Accelerated blood clearance

ADAM:

9-anthryldiazomethane

AUC:

Area under the blood concentration-time curve

CL:

Total body clearance

DEA:

diethanolamine

EPR:

Enhanced permeability and retention

FBS:

Fetal bovine serum

1H-NMR:

Proton nuclear magnetic resonance

HPLC:

High-performance liquid chromatography

MPS:

Mononuclear phagocyte system

MQW:

Milli-Q water

Mw:

Molecular weight

PBS:

Phosphate-buffered saline

PEG:

Poly(ethyleneglycol)

PGE1:

Prostaglandin E1

PLA:

Poly(lactide)

QOL:

Quality of life

S.E.M.:

Standard error mean

REFERENCES

  1. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  PubMed  CAS  Google Scholar 

  2. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600–3.

    Article  PubMed  CAS  Google Scholar 

  3. Stolnik S, Dunn SE, Garnett MC, Davies MC, Coombes AG, Taylor DC, et al. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharm Res. 1994;11:1800–8.

    Article  PubMed  CAS  Google Scholar 

  4. Ishihara T, Takahashi M, Higaki M, Takenaga M, Mizushima T, Mizushima Y. Prolonging the in vivo residence time of prostaglandin E(1) with biodegradable nanoparticles. Pharm Res. 2008;25:1686–95.

    Article  PubMed  CAS  Google Scholar 

  5. Sharpe M, Easthope SE, Keating GM, Lamb HM. Polyethylene glycol-liposomal doxorubicin: a review of its use in the management of solid and haematological malignancies and AIDS-related Kaposi’s sarcoma. Drugs 2002;62:2089–126.

    Article  PubMed  CAS  Google Scholar 

  6. Dams ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, et al. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmacol Exp Ther. 2000;292:1071–9.

    PubMed  CAS  Google Scholar 

  7. Ishida T, Maeda R, Ichihara M, Mukai Y, Motoki Y, Manabe Y, et al. The accelerated clearance on repeated injection of pegylated liposomes in rats: laboratory and histopathological study. Cell Mol Biol Lett. 2002;7:286.

    PubMed  Google Scholar 

  8. Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008;354:56–62.

    Article  PubMed  CAS  Google Scholar 

  9. Wang XY, Ishida T, Ichihara M, Kiwada H. Influence of the physicochemical properties of liposomes on the accelerated blood clearance phenomenon in rats. J Control Release. 2005;104:91–102.

    Article  PubMed  CAS  Google Scholar 

  10. Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, et al. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmacol Exp Ther. 2001;298:607–12.

    PubMed  CAS  Google Scholar 

  11. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25.

    Article  PubMed  CAS  Google Scholar 

  12. Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release. 2006;115:251–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ishida T, Masuda K, Ichikawa T, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of a second injection of PEGylated liposomes in mice. Int J Pharm. 2003;255:167–74.

    Article  PubMed  CAS  Google Scholar 

  14. Ishida T, Maeda R, Ichihara M, Irimura K, Kiwada H. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release. 2003;88:35–42.

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release. 2007;119:236–44.

    Article  PubMed  CAS  Google Scholar 

  16. Ishida T, Ichihara M, Wang X, Kiwada H. Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J Control Release. 2006;115:243–50.

    Article  PubMed  CAS  Google Scholar 

  17. Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007;122:349–55.

    Article  PubMed  CAS  Google Scholar 

  18. Ishida T, Kashima S, Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats. J Control Release. 2008;126:162–5.

    PubMed  CAS  Google Scholar 

  19. Caro J, Migliaccio-Walle K, Ishak KJ, Proskorovsky I. The morbidity and mortality following a diagnosis of peripheral arterial disease: long-term follow-up of a large database. BMC Cardiovasc Disord. 2005;5:14.

    Article  PubMed  Google Scholar 

  20. Chandra Sekhar N. Effect of eight prostaglandins on platelet aggregation. J Med Chem. 1970;13:39–44.

    Article  PubMed  CAS  Google Scholar 

  21. Simmet T, Peskar BA. Prostaglandin E1 and arterial occlusive disease: pharmacological considerations. Eur J Clin Invest. 1988;18:549–54.

    Article  PubMed  CAS  Google Scholar 

  22. Carlson LA, Olsson AG. Intravenous prostaglandin E1 in severe peripheral vascular disease. Lancet. 1976;2:810.

    Article  PubMed  CAS  Google Scholar 

  23. Belch JJ, Bell PR, Creissen D, Dormandy JA, Kester RC, McCollum RD, et al. Randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of AS-013, a prostaglandin E1 prodrug, in patients with intermittent claudication. Circulation 1997;95:2298–302.

    PubMed  CAS  Google Scholar 

  24. Ferreira SH, Vane JR. Prostaglandins: their disappearance from and release into the circulation. Nature 1967;216:868–73.

    Article  PubMed  CAS  Google Scholar 

  25. Golub M, Zia P, Matsuno M, Horton R. Metabolism of prostaglandins A1 and E1 in man. J Clin Invest. 1975;56:1404–10.

    Article  PubMed  CAS  Google Scholar 

  26. Monkhouse DC, Van Campen L, Aguiar AJ. Kinetics of dehydration and isomerization of prostaglandins E 1 and E 2. J Pharm Sci. 1973;62:576–80.

    Article  PubMed  CAS  Google Scholar 

  27. Mizushima Y, Yanagawa A, Hoshi K. Prostaglandin E1 is more effective, when incorporated in lipid microspheres, for treatment of peripheral vascular diseases in man. J Pharm Pharmacol. 1983;35:666–7.

    PubMed  CAS  Google Scholar 

  28. Mizushima Y. Lipo-prostaglandin preparations. Prostaglandins Leukot Essent Fatty Acids. 1991;42:1–6.

    Article  PubMed  CAS  Google Scholar 

  29. Mizushima Y. Lipid microspheres as novel drug carriers. Drugs Exp Clin Res. 1985;11:595–600.

    PubMed  CAS  Google Scholar 

  30. Mizushima Y, Hamano T, Haramoto S, Kiyokawa S, Yanagawa A, Nakura K, et al. Distribution of lipid microspheres incorporating prostaglandin E1 to vascular lesions. Prostaglandins Leukot Essent Fatty Acids. 1990;41:269–72.

    Article  PubMed  CAS  Google Scholar 

  31. Igarashi R, Mizushima Y, Takenaga M, Matsumoto K, Morizawa Y, Yasuda A. A stable PGE1 prodrug for targeting therapy. J Control Release. 1992;20:37–46.

    Article  CAS  Google Scholar 

  32. Yoshida T, Uetake A, Yamaguchi H, Nimura N, Kinoshita T. New preparation method for 9-anthryldiazomethane (ADAM) as a fluorescent labeling reagent for fatty acids and derivatives. Anal Biochem. 1988;173:70–4.

    Article  PubMed  CAS  Google Scholar 

  33. Ishihara T, Takahashi M, Higaki M, Mizushima Y. Efficient encapsulation of a water-soluble corticosteroid in biodegradable nanoparticles. Int J Pharm. 2009;365:200–5.

    Article  PubMed  CAS  Google Scholar 

  34. Ishihara T, Izumo N, Higaki M, Shimada E, Hagi T, Mine L, et al. Role of zinc in formulation of PLGA/PLA nanoparticles encapsulating betamethasone phosphate and its release profile. J Control Release. 2005;105:68–76.

    Article  PubMed  CAS  Google Scholar 

  35. Bazile D, Prud'homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci. 1995;84:493–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ishida T, Harada M, Wang XY, Ichihara M, Irimura K, Kiwada H. Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release. 2005;105:305–17.

    Article  PubMed  CAS  Google Scholar 

  37. Lee SW, Chang DH, Shim MS, Kim BO, Kim SO, Seo MH. Ionically fixed polymeric nanoparticles as a novel drug carrier. Pharm Res. 2007;24:1508–16.

    Article  PubMed  CAS  Google Scholar 

  38. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325:172–9.

    Article  PubMed  CAS  Google Scholar 

  39. Koide H, Asai T, Hatanaka K, Urakami T, Ishii T, Kenjo E, et al. Particle size-dependent triggering of accelerated blood clearance phenomenon. Int J Pharm. 2008;362:197–200.

    Article  PubMed  CAS  Google Scholar 

  40. Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53.

    Article  PubMed  CAS  Google Scholar 

  41. Richter AW, Akerblom E. Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol. 1984;74:36–9.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Health, Labour, and Welfare of Japan, as well as the Japan Science and Technology Agency and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Mizushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, T., Takeda, M., Sakamoto, H. et al. Accelerated Blood Clearance Phenomenon Upon Repeated Injection of PEG-modified PLA-nanoparticles. Pharm Res 26, 2270–2279 (2009). https://doi.org/10.1007/s11095-009-9943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9943-x

KEY WORDS

Navigation