Skip to main content

Advertisement

Log in

Complex Pharmacokinetics of a Humanized Antibody Against Human Amyloid Beta Peptide, Anti-Abeta Ab2, in Nonclinical Species

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Anti-Aβ Ab2 (Ab2) is a humanized monoclonal antibody against amino acids 3–6 of primate (but not rodent) amyloid β (Aβ) and is being evaluated for the treatment of Alzheimer’s disease (AD). This study was conducted to predict the human pharmacokinetics of Ab2.

Methods

In vivo PK profile of Ab2 in preclinical species and in vitro mechanistic studies in preclinical and human systems were used for pharmacokinetic predictions.

Results

In Tg2576 and PSAPP mice that have ~100-fold higher circulating levels of human Aβ compared to humans, elimination of Ab2 was target-mediated, such that exposure was 5–10 fold lower compared to wild-type rodents or to PDAPP mice that have human Aβ concentrations in plasma similar to humans. In cynomolgus monkeys, the t1/2 of Ab2 was faster (<2.5 days) compared to that of the control antibody (~13 days). The fast elimination of Ab2 in cynomolgus monkeys was linked to off-target binding to cynomolgus monkey fibrinogen that was also causing incomplete recovery of Ab2 in cynomolgus monkey serum in blood partitioning experiments. Ab2 had significantly weaker to undetectable binding to human (and mouse) fibrinogen and had good recovery in human serum in blood partitioning experiments.

Conclusions

These data predict that elimination of Ab2 in healthy or AD humans is expected to be slow, with t1/2 similar to that observed for other humanized antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.

    Article  PubMed  CAS  Google Scholar 

  2. Games D, Bard F, Grajeda H, Guido T, Khan K, Soriano F, et al. Prevention and reduction of AD-type pathology in PDAPP mice immunized with A beta 1–42. Ann N Y Acad Sci. 2000;920:274–84.

    Article  PubMed  CAS  Google Scholar 

  3. Lemere CA, Maier M, Jiang L, Peng Y, Seabrook TJ. Amyloid-beta immunotherapy for the prevention and treatment of Alzheimer disease: lessons from mice, monkeys, and humans. Rejuvenation Res. 2006;9:77–84.

    Article  PubMed  CAS  Google Scholar 

  4. Jicha GA. Is passive immunization for Alzheimer’s disease ‘alive and well’ or ‘dead and buried’? Expert Opin Biol Ther. 2009;9:481–91.

    Article  PubMed  CAS  Google Scholar 

  5. Wilcockand DM, Colton CA. Anti-amyloid-beta immunotherapy in Alzheimer’s disease: relevance of transgenic mouse studies to clinical trials. J Alzheimers Dis. 2008;15:555–69.

    Google Scholar 

  6. Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, et al. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998;4:97–100.

    Article  PubMed  CAS  Google Scholar 

  7. Irizarry MC, Soriano F, McNamara M, Page KJ, Schenk D, Games D, et al. Abeta deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J Neurosci. 1997;17:7053–9.

    PubMed  CAS  Google Scholar 

  8. Kawarabayashi T, Younkin LH, Saido TC, Shoji M, Ashe KH, Younkin SG. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer’s disease. J Neurosci. 2001;21:372–81.

    PubMed  CAS  Google Scholar 

  9. Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, et al. Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2006;103:5161–6.

    Article  PubMed  CAS  Google Scholar 

  10. Golde TE, Das P, Levites Y. Quantitative and mechanistic studies of abeta immunotherapy. CNS Neurol Disord Drug Targets. 2009;8:31–49.

    Article  PubMed  CAS  Google Scholar 

  11. Levites Y, Smithson LA, Price RW, Dakin RS, Yuan B, Sierks MR, et al. Insights into the mechanisms of action of anti-Abeta antibodies in Alzheimer’s disease mouse models. Faseb J. 2006;20:2576–8.

    Article  PubMed  CAS  Google Scholar 

  12. Dodel RC, Hampel H, Du Y. Immunotherapy for Alzheimer’s disease. Lancet Neurol. 2003;2:215–20.

    Article  PubMed  CAS  Google Scholar 

  13. Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci. 2008;31:175–93.

    Article  PubMed  CAS  Google Scholar 

  14. Gaugler MN, Tracy J, Kuhnle K, Crameri A, Nitsch RM, Mohajeri MH. Modulation of Alzheimer’s pathology by cerebro-ventricular grafting of hybridoma cells expressing antibodies against Abeta in vivo. FEBS Lett. 2005;579:753–6.

    Article  PubMed  CAS  Google Scholar 

  15. Karlnoski RA, Rosenthal A, Alamed J, Ronan V, Gordon MN, Gottschall PE, et al. Deglycosylated anti-Abeta antibody dose-response effects on pathology and memory in APP transgenic mice. J Neuroimmune Pharmacol. 2008;3:187–97.

    Article  PubMed  Google Scholar 

  16. Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X. Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci. 99:1028–45.

  17. Janus C, Westaway D. Transgenic mouse models of Alzheimer’s disease. Physiol Behav. 2001;73:873–86.

    Article  PubMed  CAS  Google Scholar 

  18. Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem. 2008;104:859–74.

    Article  PubMed  CAS  Google Scholar 

  19. Yu P, Oberto G. Alzheimer’s disease: transgenic mouse models and drug assessment. Pharmacol Res. 2000;42:107–14.

    Article  PubMed  Google Scholar 

  20. Davis CB, Garver EM, Kwok DC, Urbanski JJ. Disposition of metabolically radiolabeled CE9.1–a macaque-human chimeric anti-human CD4 monoclonal antibody–in transgenic mice bearing human CD4. Drug metabolism and disposition: the biological fate of chemicals. 1996;24:1032–7.

    CAS  Google Scholar 

  21. Putnam WS, Li J, Haggstrom J, Ng C, Kadkhodayan-Fischer S, Cheu M, et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. The AAPS Journal. 2008;10:425–30.

    Article  PubMed  CAS  Google Scholar 

  22. Ghiso J, Shayo M, Calero M, Ng D, Tomidokoro Y, Gandy S, et al. Systemic catabolism of Alzheimer’s Abeta40 and Abeta42. J Biol Chem. 2004;279:45897–908.

    Article  PubMed  CAS  Google Scholar 

  23. Amris A, Amris CJ. Turnover and distribution of 131-iodine-labelled human fibrinogen. Thromb Diath Haemorrh. 1964;11:404–22.

    PubMed  CAS  Google Scholar 

  24. Areekul S, Devakul K, Chongsuphajaisiddhi T, Vivatanasesth P, Kanakakorn K, Kasemsuth R. Metabolism of 131 I-labelled fibrinogen in monkeys infected with Plasmodium coatneyi. Southeast Asian J Trop Med Public Health. 1971;2:455–61.

    PubMed  CAS  Google Scholar 

  25. Moza AK, Sapru RP. Turnover of radio-iodinated and biosynthetically labelled fibrinogen in rhesus monkeys. Indian J Med Res. 1982;76:609–17.

    PubMed  CAS  Google Scholar 

  26. Negrier C, Rothschild C, Goudemand J, Borg JY, Claeyssens S, Alessi MC, et al. Pharmacokinetics and pharmacodynamics of a new highly secured fibrinogen concentrate. J Thromb Haemost. 2008;6:1494–9.

    Article  PubMed  CAS  Google Scholar 

  27. Tytgat GN, Collen D, Verstraete M. Metabolism of fibrinogen in cirrhosis of the liver. J Clin Invest. 1971;50:1690–701.

    Article  PubMed  CAS  Google Scholar 

  28. Bonfanti U, Lamparelli D, Colombo P, Bernardi C. Hematology and serum chemistry parameters in juvenile cynomolgus monkeys (Macaca fascicularis) of Mauritius origin: comparison between purpose-bred and captured animals. J Med Primatol. 2009.

  29. Stern RA, Trojanowski JQ, Lee VM. Antibodies to the beta-amyloid peptide cross-react with conformational epitopes in human fibrinogen subunits from peripheral blood. FEBS Lett. 1990;264:43–7.

    Article  PubMed  CAS  Google Scholar 

  30. Merkle DL, Cheng CH, Castellino FJ, Chibber BA. Modulation of fibrin assembly and polymerization by the beta-amyloid of Alzheimer’s disease. Blood Coagul Fibrinolysis. 1996;7:650–8.

    Article  PubMed  CAS  Google Scholar 

  31. Cortes-Canteli M, Paul J, Norris EH, Bronstein R, Ahn HJ, Zamolodchikov D et al. Fibrinogen and beta-amyloid association alters thrombosis and fibrinolysis: a possible contributing factor to Alzheimer’s disease. Neuron. 66:695–709.

  32. Ghiso J, Rostagno A, Gardella JE, Liem L, Gorevic PD, Frangione B. A 109-amino-acid C-terminal fragment of Alzheimer’s-disease amyloid precursor protein contains a sequence, -RHDS-, that promotes cell adhesion. Biochem J. 1992;288(Pt 3):1053–9.

    PubMed  CAS  Google Scholar 

  33. Springer TA, Zhu J, Xiao T. Structural basis for distinctive recognition of fibrinogen gamma C peptide by the platelet integrin alphaIIbbeta3. J Cell Biol. 2008;182:791–800.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All authors are current or former employees of Pfizer, Inc. We thank JANSSEN Alzheimer Immunotherapy (South San Francisco, CA) for their contribution to this study. We also thank Mike Agostino and Michelle Mader for help with sequence alignment, Chris Shea and Nicole Duriga for help with bionalytical assays, and Andrew Hill and Ioannis Moutsatsos for help with protein bioinformatics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Vugmeyster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vugmeyster, Y., Szklut, P., Wensel, D. et al. Complex Pharmacokinetics of a Humanized Antibody Against Human Amyloid Beta Peptide, Anti-Abeta Ab2, in Nonclinical Species. Pharm Res 28, 1696–1706 (2011). https://doi.org/10.1007/s11095-011-0405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0405-x

KEY WORDS

Navigation