Skip to main content

Advertisement

Log in

Inhalable Powder Formulation of Pirfenidone with Reduced Phototoxic Risk for Treatment of Pulmonary Fibrosis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Orally-taken pirfenidone (PFD), an idiopathic pulmonary fibrosis drug, often causes severe phototoxicity. Present study aimed to develop a respirable powder formulation for PFD (PFD-RP) to minimize phototoxic risk.

Methods

Photochemical properties of PFD were examined using a reactive oxygen species (ROS) assay and photostability testing. PFD-RP was characterized with a focus on photostability, in vitro inhalation performance, and the efficacy in antigen-sensitized rats. Pharmacokinetic studies were conducted after oral and intratracheal administration of PFD formulations.

Results

Although PFD solution exhibited photodegradation under simulated sunlight (250 W/m2), both PFD powder and PFD-RP were photochemically stable. Laser diffraction and cascade impactor analyses on PFD-RP suggested its high dispersion and fine in vitro inhalation performance. Inhaled PFD-RP (300 μg-PFD/rat) could suppress antigen-evoked pulmonary inflammation in rats as evidenced by decreases in recruited inflammatory cells and neutrophilia-related biomarkers in the lung. Exposure of PFD to light-exposed tissues (skin and eye) after intratracheal administration of PFD-RP at a pharmacologically effective dose (300 μg-PFD/rat) was 90–130-fold less than that of the oral PFD dosage form at a phototoxic dose (160 mg/kg).

Conclusions

PFD-RP might be an attractive alternative to the current oral PFD therapy with a better safety margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

8-MOP:

8-methoxypsoralen

ANOVA:

analysis of variance

AUC:

area under concentration versus time curve

AUMC:

area under moment curve

BALF:

bronchoalveolar lavage fluid

EPO:

eosinophil peroxidase

ESI-MS:

electrospray ionization mass spectrometry

FQ:

fluoroquinolones

HPMC:

hydroxypropyl methylcellulose

MPO:

myeloperoxidase

MRT:

mean residence time

OVA:

ovalbumin

PBS:

phosphate-buffered saline

ROS:

reactive oxygen species

RP:

respirable powder

SEM:

scanning electron microscopy

TMBZ:

3,3′,5,5′-tetramethylbenzidine

UPLC:

ultra performance liquid chromatography

References

  1. Hisatomi K, Mukae H, Sakamoto N, Ishimatsu Y, Kakugawa T, Hara S, et al. Pirfenidone inhibits TGF-ss1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells. BMC Pulm Med. 2012;12:24.

    Article  PubMed  CAS  Google Scholar 

  2. Iyer SN, Gurujeyalakshmi G, Giri SN. Effects of pirfenidone on transforming growth factor-beta gene expression at the transcriptional level in bleomycin hamster model of lung fibrosis. J Pharmacol Exp Ther. 1999;291:367–73.

    PubMed  CAS  Google Scholar 

  3. Lasky J. Pirfenidone. IDrugs. 2004;7:166–72.

    PubMed  CAS  Google Scholar 

  4. Schaefer CJ, Ruhrmund DW, Pan L, Seiwert SD, Kossen K. Antifibrotic activities of pirfenidone in animal models. Eur Respir Rev. 2011;20:85–97.

    Article  PubMed  CAS  Google Scholar 

  5. Corbel M, Lanchou J, Germain N, Malledant Y, Boichot E, Lagente V. Modulation of airway remodeling-associated mediators by the antifibrotic compound, pirfenidone, and the matrix metalloproteinase inhibitor, batimastat, during acute lung injury in mice. Eur J Pharmacol. 2001;426:113–21.

    Article  PubMed  CAS  Google Scholar 

  6. Hilberg O, Simonsen U, du Bois R, Bendstrup E. Pirfenidone: significant treatment effects in idiopathic pulmonary fibrosis. Clin Respir J. 2012;6:131–43.

    Article  PubMed  CAS  Google Scholar 

  7. Richeldi L, Yasothan U, Kirkpatrick P. Pirfenidone. Nat Rev Drug Discov. 2011;10:489–90.

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:821–9.

    Article  PubMed  CAS  Google Scholar 

  9. Carter NJ. Pirfenidone: in idiopathic pulmonary fibrosis. Drugs. 2011;71:1721–1732.

    Google Scholar 

  10. Steinand KR, Scheinfeld NS. Drug-induced photoallergic and phototoxic reactions. Expert Opin Drug Saf. 2007;6:431–43.

    Article  Google Scholar 

  11. Onoue S, Seto Y, Gandy G, Yamada S. Drug-induced phototoxicity; an early in vitro identification of phototoxic potential of new drug entities in drug discovery and development. Curr Drug Saf. 2009;4:123–36.

    Article  PubMed  CAS  Google Scholar 

  12. Seto Y, Inoue R, Ochi M, Gandy G, Yamada S, Onoue S. Combined use of in vitro phototoxic assessments and cassette dosing pharmacokinetic study for phototoxicity characterization of fluoroquinolones. AAPS J. 2011;13:482–92.

    Article  PubMed  CAS  Google Scholar 

  13. Onoue S, Aoki Y, Kawabata Y, Matsui T, Yamamoto K, Sato H, et al. Development of inhalable nanocrystalline solid dispersion of tranilast for airway inflammatory diseases. J Pharm Sci. 2011;100:622–33.

    Article  PubMed  CAS  Google Scholar 

  14. Onoue S, Sato H, Kawabata Y, Mizumoto T, Hashimoto N, Yamada S. In vitro and in vivo characterization on amorphous solid dispersion of cyclosporine A for inhalation therapy. J Control Release. 2009;138:16–23.

    Article  PubMed  CAS  Google Scholar 

  15. Onoueand S, Tsuda Y. Analytical studies on the prediction of photosensitive/phototoxic potential of pharmaceutical substances. Pharm Res. 2006;23:156–64.

    Article  Google Scholar 

  16. Misaka S, Sato H, Yamauchi Y, Onoue S, Yamada S. Novel dry powder formulation of ovalbumin for development of COPD-like animal model: Physicochemical characterization and biomarker profiling in rats. Eur J Pharm Sci. 2009;37:469–76.

    Article  PubMed  CAS  Google Scholar 

  17. Onoue S, Kawamura K, Igarashi N, Zhou Y, Fujikawa M, Yamada H, et al. Reactive oxygen species assay-based risk assessment of drug-induced phototoxicity: Classification criteria and application to drug candidates. J Pharm Biomed Anal. 2008;47:967–72.

    Article  PubMed  CAS  Google Scholar 

  18. Onoue S, Hosoi K, Wakuri S, Iwase Y, Yamamoto T, Matsuoka N et al. Establishment and intra-/inter-laboratory validation of a standard protocol of reactive oxygen species assay for chemical photosafety evaluation. J Appl Toxicol:in press (2012). doi:10.1002/jat.2776.

  19. Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010;99:1871–81.

    PubMed  CAS  Google Scholar 

  20. Matsudaand Y, Masahara R. Photostability of solid-state ubidecarenone at ordinary and elevated temperatures under exaggerated UV irradiation. J Pharm Sci. 1983;72:1198–203.

    Article  Google Scholar 

  21. Onoue S, Hashimoto N, Yamada S. Dry powder inhalation systems for pulmonary delivery of therapeutic peptides and proteins. Expert Opin Ther Patents. 2008;18:429–42.

    Article  CAS  Google Scholar 

  22. Suarezand S, Hickey AJ. Drug properties affecting aerosol behavior. Respir Care. 2000;45:652–66.

    Google Scholar 

  23. Labirisand NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56:588–99.

    Article  Google Scholar 

  24. Pesci A, Ricchiuti E, Ruggiero R, De Micheli A. Bronchoalveolar lavage in idiopathic pulmonary fibrosis: what does it tell us? Respir Med. 2010;104 Suppl 1:S70–3.

    Article  PubMed  Google Scholar 

  25. Beeh KM, Beier J, Kornmann O, Buhl R. Neutrophilic inflammation in induced sputum of patients with idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2003;20:138–43.

    PubMed  Google Scholar 

  26. Tzortzaki EG, Tsoumakidou M, Makris D, Siafakas NM. Laboratory markers for COPD in “susceptible” smokers. Clin Chim Acta. 2006;364:124–38.

    Article  PubMed  CAS  Google Scholar 

  27. Onoue S, Misaka S, Kawabata Y, Yamada S. New treatments for chronic obstructive pulmonary disease and viable formulation/device options for inhalation therapy. Expert Opin Drug Deliv. 2009;6:793–811.

    Article  PubMed  CAS  Google Scholar 

  28. Seto Y, Aoki Y, Inoue R, Kojo Y, Kato M, Onoue S, et al. Development of dry powder inhaler system for reducing phototoxic risk. In: Oku N, editor. DDS conference, vol. 20. Shizuoka: Biomedical Research Press; 2011. p. 41–6.

    Google Scholar 

Download references

Acknowledgments AND DISCLOSURES

Authors are grateful to Shionogi&Co., Ltd. for kindly providing pirfenidone. This work was supported in part by a Grant-in-Aid for Young Scientists (B) (No. 22790043; S. Onoue) from the Ministry of Education, Culture, Sports, Science, and Technology and a Health Labour Sciences Research Grant from The Ministry of Health, Labour, and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoue, S., Seto, Y., Kato, M. et al. Inhalable Powder Formulation of Pirfenidone with Reduced Phototoxic Risk for Treatment of Pulmonary Fibrosis. Pharm Res 30, 1586–1596 (2013). https://doi.org/10.1007/s11095-013-0997-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-0997-4

Key words

Navigation