Skip to main content
Log in

Regulation of Cytochrome b 5 Expression by miR-223 in Human Liver: Effects on Cytochrome P450 Activities

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Cytochrome b 5 (b 5) is a hemoprotein that transfers electrons to several enzymes to fulfill functions in fatty acid desaturation, methemoglobin reduction, steroidogenesis, and drug metabolism. Despite the importance of b 5, the regulation of b 5 expression in human liver remains largely unknown. We investigated whether microRNA (miRNA) might be involved in the regulation of human b 5.

Methods

Twenty-four human liver specimens were used for correlation analysis. In silico analysis and luciferase assay were performed to determine whether the predicted miRNAs functionally target to b 5. The miR-223 was overexpressed into HepG2 cells infected with adenovirus expressing human cytochrome P450.

Results

In human livers, the b 5 protein levels were not positively correlated with the b 5 mRNA levels, and miR-223 levels were inversely correlated with the b 5 mRNA levels or the translational efficiencies. The luciferase assay showed that miR-223 functionally binds to the element in the 3′-untranslated region of b 5 mRNA. The overexpression of miR-223 significantly reduced the endogenous b 5 protein level and the mRNA stability in HepG2 cells. Moreover, the overexpression of miR-223 significantly reduced CYP3A4-catalyzed testosterone 6β-hydroxylation activity and CYP2E1-catalyzed chlorzoxazone 6-hydroxylase activity but not CYP1A2-catalyzed 7-ethoxyresorufin O-deethylase activity.

Conclusions

miR-223 down-regulates b 5 expression in the human liver, modulating P450 activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Ad:

Adenovirus

b 5 :

Cytochrome b 5

CYP:

Cytochrome P450

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HPLC:

High-performance liquid chromatography

miRNA:

MicroRNA

MOI:

Multiplicity of infection

MRE:

miRNA recognition element

NPR:

NADPH-cytochrome P450 reductase

P450:

Cytochrome P450

PAGE:

Polyacrylamide gel electrophoresis

pre-miRNA:

Precursor miRNA

RT-PCR:

Reverse transcription-polymerase chain reaction

siRNA:

Small interfering RNA

REFERENCES

  1. Schenkman JB, Jansson I. The many roles of cytochrome b 5. Pharmacol Ther. 2003;97:139–52.

    Article  CAS  PubMed  Google Scholar 

  2. Storbeck KH, Swart AC, Goosen P, Swart P. Cytochrome b 5: novel roles in steroidogenesis. Mol Cell Endocrinol. 2013;371:87–99.

    Article  CAS  PubMed  Google Scholar 

  3. Goto-Tamura R, Takesue Y, Takesue S. Immunological similarity between NADH-cytochrome b 5 reductase of erythrocytes and liver microsomes. Biochim Biophys Acta. 1976;423:293–302.

    Article  CAS  PubMed  Google Scholar 

  4. Livingston DJ, McLachlan SJ, La Mar GN, Brown WD. Myoglobin: cytochrome b 5 interactions and the kinetic mechanism of metmyoglobin reductase. J Biol Chem. 1985;260:15699–707.

    CAS  PubMed  Google Scholar 

  5. Porter TD. The roles of cytochrome b 5 in cytochrome P450 reactions. J Biochem Mol Toxicol. 2002;16:311–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hegesh E, Hegesh J, Kaftory A. Congenital methemoglobinemia with a deficiency of cytochrome b 5. N Engl J Med. 1986;314:757–61.

    Article  CAS  PubMed  Google Scholar 

  7. McLaughlin LA, Ronseaux S, Finn RD, Henderson CJ, Wolf CR. Deletion of microsomal cytochrome b 5 profoundly affects hepatic and extrahepatic drug metabolism. Mol Pharmacol. 2010;78:269–78.

    Article  CAS  PubMed  Google Scholar 

  8. Finn RD, McLaughlin LA, Ronseaux S, Rosewell I, Houston JB, Henderson CJ, et al. Defining the in vivo role for cytochrome b 5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b 5. J Biol Chem. 2008;283:31385–93.

    Article  CAS  PubMed  Google Scholar 

  9. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 2004;14:1–18.

    Article  CAS  PubMed  Google Scholar 

  10. Guengerich FP. Rate-limiting steps in cytochrome P450 catalysis. Biol Chem. 2002;383:1553–64.

    Article  CAS  PubMed  Google Scholar 

  11. Yamazaki H, Nakamura M, Komatsu T, Ohyama K, Hatanaka N, Asahi S, et al. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b 5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr Purif. 2002;24:329–37.

    Article  CAS  PubMed  Google Scholar 

  12. Guryev OL, Gilep AA, Usanov SA, Estabrook RW. Interaction of apo-cytochrome b 5 with cytochromes P4503A4 and P45017A: relevance of heme transfer reactions. Biochemistry. 2001;40:5018–31.

    Article  CAS  PubMed  Google Scholar 

  13. Huang N, Dardis A, Miller WL. Regulation of cytochrome b 5 gene transcription by Sp3, GATA-6, and steroidogenic factor 1 in human adrenal NCI-H295A cells. Mol Endocrinol. 2005;19:2020–34.

    Article  CAS  PubMed  Google Scholar 

  14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  15. Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9:775–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2001;19:92–105.

    Article  Google Scholar 

  17. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  18. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  CAS  PubMed  Google Scholar 

  20. Nakajima M, Yokoi T. MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther. 2011;131:330–7.

    Article  CAS  PubMed  Google Scholar 

  21. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res. 2006;66:9090–8.

    Article  CAS  PubMed  Google Scholar 

  22. Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T. Human CYP2E1 is regulated by miR-378. Biochem Pharmacol. 2010;79:1045–52.

    Article  CAS  PubMed  Google Scholar 

  23. Komagata S, Nakajima M, Takagi S, Mohri T, Taniya T, Yokoi T. Human CYP24 catalyzing the inactivation of calcitriol is post-transcriptionally regulated by miR-125b. Mol Pharmacol. 2009;76:702–9.

    Article  CAS  PubMed  Google Scholar 

  24. Tabata T, Katoh M, Tokudome S, Hosokawa M, Chiba K, Nakajima M, et al. Bioactivation of capecitabine in human liver: involvement of the cytosolic enzyme on 5′-deoxy-5-fluorocytidine formation. Drug Metab Dispos. 2004;32:762–7.

    Article  CAS  PubMed  Google Scholar 

  25. Omura T, Sato R. The carbon monooxide-binding pigment of liver microsomes. I. evidence for its hemoprotein nature. J Biol Chem. 1964;239:2370–8.

    CAS  PubMed  Google Scholar 

  26. Yoshitomi S, Ikemoto K, Takahashi J, Miki H, Namba M, Asahi S. Establishment of the transformants expressing human cytochrome P450 subtypes in HepG2, and their applications on drug metabolism and toxicology. Toxicol in Vitro. 2001;15:245–56.

    Article  CAS  PubMed  Google Scholar 

  27. Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64:3119–25.

    Article  CAS  PubMed  Google Scholar 

  28. Hosomi H, Akai S, Minami K, Yoshikawa Y, Fukami T, Nakajima M, et al. An in vitro drug-induced hepatotoxicity screening system using CYP3A4-expressing and γ-glutamylcysteine synthetase knockdown cells. Toxicol in Vitro. 2010;24:1032–8.

    Article  CAS  PubMed  Google Scholar 

  29. Oda S, Nakajima M, Toyoda Y, Fukami T, Yokoi T. Progesterone receptor membrane component 1 modulates human cytochrome P450 activities in an isoform-dependent manner. Drug Metab Dispos. 2011;39:2057–65.

    Article  CAS  PubMed  Google Scholar 

  30. Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, et al. MicroRNA-223 is commonly expressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology. 2008;135:257–69.

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki H, Gillam EM, Dong MS, Johnson WW, Guengerich FP, Shimada T. Reconstitution of recombinant cytochrome P450 2C10(2C9) and comparison with cytochrome P450 3A4 and other forms: effects of cytochrome P450-P450 and cytochrome P450-b 5 interactions. Arch Biochem Biophys. 1997;342:329–37.

    Article  CAS  PubMed  Google Scholar 

  32. Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics. 2009;25:3049–55.

    Article  CAS  PubMed  Google Scholar 

  33. Hildebrandt A, Estabrook RW. Evidence for the participation of cytochrome b 5 in hepatic microsomal mixed-function oxidation reactions. Arch Biochem Biophys. 1971;143:66–79.

    Article  CAS  PubMed  Google Scholar 

  34. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  35. Stamatopoulos B, Meuleman N, Haibe-Kains B, Saussoy P, Van Den Neste E, Michaux L, et al. microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and improves disease risk stratification. Blood. 2009;113:5237–45.

    Article  CAS  PubMed  Google Scholar 

  36. Liu TY, Chen SU, Kuo SH, Cheng AL, Lin CW. E2A-positive gastric MALT lymphoma has weaker plasmacytoid infiltrates and stronger expression of the memory B-cell-associated miR-223: possible correlation with stage and treatment response. Mod Pathol. 2010;23:1507–17.

    Article  CAS  PubMed  Google Scholar 

  37. Laios A, O’Toole S, Flavin R, Martin C, Kelly L, Ring M, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer. 2008;7:35.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell. 2005;123:819–31.

    Article  CAS  PubMed  Google Scholar 

  39. Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell. 2007;129:617–31.

    Article  CAS  PubMed  Google Scholar 

  40. Dai R, Phillips RA, Zhang Y, Khan D, Crasta O, Ahmed SA. Suppression of LPS-induced Interferon-γ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood. 2008;112:4591–7.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank Dr. Satoru Asahi (Takeda Pharmaceutical, Osaka, Japan) for providing Hepc/3A4.2-30, Hepc/2E1.3-8, and Hepc/1A2.9 cells. The authors would also like to thank Dr. Masataka Takamiya and Yasuhiro Aoki (Department of Legal Medicine, Iwate Medical University School of Medicine, Japan) for providing human liver samples. This work was support by Grant-in-Aid for Challenging Exploratory Research from Japan Society for the Promotion of Science [Grant 24659074].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miki Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Table 1

(DOC 173 kb)

Supplemental Figure 1

(DOC 180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, K., Oda, Y., Toyoda, Y. et al. Regulation of Cytochrome b 5 Expression by miR-223 in Human Liver: Effects on Cytochrome P450 Activities. Pharm Res 31, 780–794 (2014). https://doi.org/10.1007/s11095-013-1200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1200-7

KEY WORDS

Navigation