Skip to main content

Advertisement

Log in

Pharmacokinetic and urine profile of tramadol and its major metabolites following oral immediate release capsules administration in dogs

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

The aim of the present paper was to test the oral administration of oral immediate release capsules of tramadol in dogs, to asses both its pharmacokinetic properties and its urine profile. After capsules administration of tramadol (4 mg/kg), involving eight male Beagle dogs, the concentration of tramadol and its main metabolites, M1, M2 and M5, were determined in plasma and urine using an HPLC method. The plasma concentrations of tramadol and metabolites were fitted on the basis of mono- and non-compartmental models, respectively. Tramadol was detected in plasma from 5 min up to 10 h in lesser amounts than M5 and M2, detected at similar concentrations, while M1 was detected in negligible amounts. In the urine, M5 and M1 showed the highest and smallest amount, respectively; M1 and M5 resulted widely conjugate with glucuronic acid. In conclusion, after oral administration of tramadol immediate release capsules, the absorption of the active ingredient was rapid, but its rapid metabolism quickly transformed the parental drug to high levels of M5 and M2, showing an extensive elimination via the kidney. Hence, in the dog, the oral immediate release pharmaceutical formulation of tramadol would have different pharmacokinetic behaviour than in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ardakani YH, Rouini MR (2007) Improved liquid chromatographic method for the simultaneous determination of tramadol and its three main metabolites in human plasma, urine and saliva. J Pharm Biomed Anal 44:1168–1173 doi:10.1016/j.jpba.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  • de Sousa AB, Santos AC, Schramm SG, Porta V, Górniak SL, Florio JC, de Souza Spinosa H (2008) Pharmacokinetics of tramadol and O-desmethyltramadol in goats after intravenous and oral administration. J Vet Pharmacol Ther 31:45–51

    PubMed  Google Scholar 

  • Elghazali M, Barezaik IM, Abdel Hadi AA, Eltayeb FM, Al Masri J, Wasfi IA (2008) The pharmacokinetics, metabolism and urinary detection time of tramadol in camels. Vet J 178:272–277 doi:10.1016/j.tvjl.2007.07.008

    Article  CAS  PubMed  Google Scholar 

  • Elsohly MA, Gul W, Feng S, Murphy TP (2005) Hydrolysis of conjugated metabolites of buprenorphine II. The quantitative enzymatic hydrolysis of norbuprenorphine-3-beta-D-glucuronide in human urine. J Anal Toxicol 29:570–573

    CAS  PubMed  Google Scholar 

  • Gabrielsson J, Weiner D (2002) Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and Applications. Swedish Pharmaceutical Press, Stockholm, Sweden

    Google Scholar 

  • Gillen C, Haurand M, Kobelt DJ, Wnendt S (2000) Affinity, potency and efficacy of tramadol and its metabolites at the cloned human mu-opioid receptor. Naunyn Schmiedeberg’s Arch Pharmacol 362:116–121 doi:10.1007/s002100000266

    Article  CAS  Google Scholar 

  • Giorgi M, Saccomanni G, Daniello MR, Manera C, Soldani G, Ferrarini PL, Giusiani M (2006) In vitro metabolism of tramadol in horses: preliminary data. J Vet Pharmacol Ther 29:124 doi:10.1111/j.1365-2885.2006.00762_15.x

    Article  Google Scholar 

  • Giorgi M, Soldani G, Manera C, Ferrarini PL, Sgorbini M, Saccomanni G (2007) Pharmacokinetics of tramadol and its metabolites M1, M2 and M5 in horses following intravenous, immediate release (fasted/fed) and sustained release single dose administration. J Equine Vet Sci 27:481–488 doi:10.1016/j.jevs.2007.10.004

    Article  Google Scholar 

  • Giorgi M, Del Carlo S, Saccomanni G, Łebkowska-Wieruszewska B, Kowalski CJ (2009a) Pharmacokinetics of tramadol and its major metabolites following intravenous and rectal administration in dogs. N Z Vet J 57:146–152

    Google Scholar 

  • Giorgi M, Del Carlo S, Sgorbini M, Saccomanni G (2009b) Pharmacokinetics of tramadol and its metabolites M1, M2 and M5 in donkeys following intravenous and oral immediate release single dose administration. J Equine Vet Sci in press

  • Giorgi M, Saccomanni G, Lebkowska-Wieruszewska B, Kowalski C (2009c) Pharmacokinetic evaluation of tramadol and its major metabolites after single oral sustained tablet administration in the dog: a pilot study. Vet J 180:253–255. doi:10.1016/j.tvjl.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  • Grond S, Sablotzki A (2004) Clinical pharmacology of tramadol. Clin Pharmacokinet 43:879–923 doi:10.2165/00003088-200443130-00004

    Article  CAS  PubMed  Google Scholar 

  • Grond S, Meuser T, Uragg H, Stahlberg HJ, Lehmann KA (1999) Serum concentrations of tramadol enantiomers during patient-controlled analgesia. Br J Clin Pharmacol 48:254–257 doi:10.1046/j.1365-2125.1999.00986.x

    Article  CAS  PubMed  Google Scholar 

  • Hojo T, Ohno R, Shimoda M, Kokue E (2002) Enzyme and plasma protein induction by multiple oral administrations of phenobarbital at a therapeutic dosage regimen in dogs. J Vet Pharmacol Ther 25:121–127 doi:10.1046/j.1365-2885.2002.00385.x

    Article  CAS  PubMed  Google Scholar 

  • Kögel B, Englberger W, Hennies HH, Friderichs E (1999) Involvement of metabolites in the analgesic action of tramadol. Proceedings of the 9th World Congress of Pain, Vienna, Austria p 523

  • KuKanich B, Papich MG (2004) Pharmacokinetics of tramadol and the metabolite O-desmethyltramadol in dogs. J Vet Pharmacol Ther 27:239–246 doi:10.1111/j.1365-2885.2004.00578.x

    Article  CAS  PubMed  Google Scholar 

  • Lehmann KA, Kratzenberg U, Schroeder-Bark B, Horrichs-Haermeyer G (1990) Postoperative patient-controlled analgesia with tramadol: analgesic efficacy and minimum effective concentrations. Clin J Pain 6:212–220 doi:10.1097/00002508-199009000-00008

    Article  CAS  PubMed  Google Scholar 

  • Lintz W, Erlaçin S, Frankus E, Uragg H (1981) Biotransformation of tramadol in man and animal. Arzneimittel-Forschung 31:1932–1943

    CAS  PubMed  Google Scholar 

  • Malonne H, Sonet B, Streel B, Lebrun S, De Niet S, Sereno A, Vanderbist F (2004) Pharmacokinetic evaluation of a new oral sustained release dosage form of tramadol. Br J Clin Pharmacol 57:270–278 doi:10.1046/j.1365-2125.2003.02013.x

    Article  CAS  PubMed  Google Scholar 

  • McMillan CJ, Livingston A, Clark CR, Dowling PM, Taylor SM, Duke T, Terlinden R (2008) Pharmacokinetics of intravenous tramadol in dogs. Can J Vet Res 72:325–331

    CAS  PubMed  Google Scholar 

  • Monteiro ER, Junior AR, Assis HM, Campagnol D, Quitzan JG (2009) Comparative study on the sedative effects of morphine, methadone, butorphanol or tramadol, in combination with acepromazine, in dogs. Vet Anaesth Analg 36: 25–33 doi:10.1111/j.1467-2995.2008.00424.x

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Yamamoto Y, Tasaki T, Sugimoto C, Masuda M, Kazusaka A, Fujita S (1995) Purification and characterization of a dog cytochrome P450 isozyme belonging to the CYP2D subfamily and development of its antipeptide antibody. Drug Metab Dispos 23:1268–1273

    CAS  PubMed  Google Scholar 

  • Pypendop BH, Ilkiw JE (2008) Pharmacokinetics of tramadol, and its metabolite O-desmethyl-tramadol, in cats. J Vet Pharmacol Ther 31:52–59

    CAS  PubMed  Google Scholar 

  • Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL (1992) Opioid and nonopioid components independently contribute to the mechanism of action of tramadol, an ‘atypical’ opioid analgesic. J Pharmacol Exp Ther 260:275–285

    CAS  PubMed  Google Scholar 

  • Schwartz S, Pateman T (2004) Preclinical pharmacokinetics. In: Evans G (ed) Handbook of Bioanalysis and Drug Metabolism, CRC Press LLC, Boca Raton FL, USA, pp 113–31

    Google Scholar 

  • Shilo Y, Britzi M, Eytan B, Lifschitz T, Soback S, Steinman A (2008) Pharmacokinetics of tramadol in horses after intravenous, intramuscular and oral administration. J Vet Pharmacol Ther 31:60–65

    CAS  PubMed  Google Scholar 

  • Subrahmanyam V, Renwick AB, Walters DG, Young PJ, Price RJ, Tonelli AP, Lake BG (2001) Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Drug Metab Dispos 29:1146–1155

    CAS  PubMed  Google Scholar 

  • Vettorato E, Zonca A, Isola M, Villa R, Gallo M, Ravasio G, Beccaglia M, Montesissa C, Cagnardi P (2009) Pharmacokinetics and efficacy of intravenous and extradural tramadol in dogs. Vet J doi:10.1016/j.tvjl.2008.11.002

    PubMed  Google Scholar 

  • Wu WN, McKown LA, Gauthier AD, Jones WJ, Raffa RB (2001) Metabolism of the analgesic drug, tramadol hydrochloride, in rat and dog. Xenobiotica 31:423–441 doi:10.1080/00498250110057378

    Article  CAS  PubMed  Google Scholar 

  • Wu WN, McKown LA, Liao S (2002) Metabolism of the analgesic drug ULTRAM (tramadol hydrochloride) in humans: API-MS and MS/MS characterization of metabolites. Xenobiotica 32:411–425 doi:10.1080/00498250110113230

    Article  CAS  PubMed  Google Scholar 

  • Yamaoka K, Terumichi N, Uno T (1978) Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 6:165–175 doi:10.1007/BF01117450

    Article  CAS  PubMed  Google Scholar 

  • Yazbek KVB, Fantoni DT (2005) Evaluation of tramadol, an “atypical” opioid analgesic in the control of immediate postoperative pain in dogs submitted to orthopaedic surgical procedures. Braz J Vet Res Anim Sci 42:250–258

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr Valentina Andreoni (Veterinary Anaesthesia and Intensive Care, University Veterinary Hospital, UCD Veterinary Sciences Centre, University College Dublin, Ireland) for her excellent technical assistance. This work was supported by athenaeum funds (ex 60% University of Pisa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, M., Del Carlo, S., Saccomanni, G. et al. Pharmacokinetic and urine profile of tramadol and its major metabolites following oral immediate release capsules administration in dogs. Vet Res Commun 33, 875–885 (2009). https://doi.org/10.1007/s11259-009-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-009-9236-1

Keywords

Navigation