Skip to main content

Advertisement

Log in

Role of anthracyclines in the era of targeted therapy

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Anthracyclines such as doxorubicin, epirubicin, and daunorubicin are among the most active cytoxic agents for treatment of a wide variety of solid tumors and hematological malignancies. The downside associated with chronic administration of anthracyclines is the induction of cardiomyopathy and congestive heart failure, usually refractory to common treatments. Anthracycline liposomal formulations are currently the best-known alternatives to improve the index and spectrum of anticancer activity of these drugs and decrease their cardiotoxicity. In the current target therapy era in oncology, anthracyclines increase the antitumor effects in more than additive fashion, being excellent partners for other active agents like taxanes and trastuzumab. It is important to note, however, that the enhanced antitumor activity of these combination therapies is often accompanied with increased cardiotoxicity. The issue of anthracycline cardiotoxicity has not been solved so far and it is also important to stress the current lack of proper prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. De Vita, V. T., & Chu, E. (2003). Drug development. Principles and Practice in Oncology. Philadelphia, Lippincott, 354.

  2. Weiss, R. B., Sarosy, G., Clagett-Carr, K., Russo, M., & Leyland-Jones, B. (1986). Anthracycline analogs: The past, present, and future. Cancer Chemotherapy Pharmacology, 18, 185–197.

    Article  CAS  Google Scholar 

  3. Verweij, J., & Kees Nooter (2002). Principles of Chemoterapy. Oxford, 564.

  4. Hortobagyi, G. N. (1997). Anthracyclines in the treatment of cancer: An overview. Drugs, 54(Suppl 4), 1–7.

    Article  PubMed  CAS  Google Scholar 

  5. Zunino, F., & Capranico, G. (1992). DNA topisomerasas II as the primary target of antitumoral anthracyclines. Anticancer Drug Designs, 5, 307–317.

    Google Scholar 

  6. Doroshow, J. (2001). Anthracyclines and anthracenediones. Cancer chemotherapy & Biotherapy, 13, 500–537.

    Google Scholar 

  7. Friche, E., Skovsgaardt, T., & Nissen, J. I. (1989). Anthracycline resistance. Acta Oncologia, 28, 877–881.

    CAS  Google Scholar 

  8. Buzdar, A. U. (2006). Topoisomerase IIalpha gene amplification and response to anthracycline-containing adjuvant chemotherapy in breast cancer. Journal of Clinical Oncology, 24, 2409–2411.

    Article  PubMed  Google Scholar 

  9. Bonadona, G., & DeLena, M. (1975). Combination usage of Adriamycin (NSC-123127) in malignant Lymphoma. Cancer Chemotherapy Reports, 6, 381–388.

    Google Scholar 

  10. Sledge, G. W., Neuberg, D., & Bernardo, P., et al (2003). Phase III trial of doxorubicin, paclitaxel, and the combination of doxorubicin and paclitaxel as front-line chemotherapy for metastatic breast cancer: An intergroup trial (E1193). Journal of Clinical Oncology, 21(4), 588–592.

    Article  PubMed  Google Scholar 

  11. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacology developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56(2), 185–229.

    Article  PubMed  CAS  Google Scholar 

  12. Steinherz, L. J., Steinherz, P. G., Tan, C. T. C., & Heller, G. (1991). Cardiac toxicity 4 to 20 years after completing anthracyclines therapy. JAMA 266, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  13. Von Hoff, D. D., Layard, M. W., & Basa, P (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.

    Google Scholar 

  14. Seidman, A., Hudis, C., & Pierri, M. K. (2002). Cardiac dysfunction in the trastuzumab clinical trials experience. Journal of Clinical Oncology, 20, 1215–1221.

    Article  PubMed  CAS  Google Scholar 

  15. Singal, P. K. (1998) Adryamicin cardiomiopathy. The New England Journal of Medicine, 339, 900–905.

    Article  PubMed  CAS  Google Scholar 

  16. Elliot, P. (2006). Pathogenesis of cardiotoxicity induced by anthracyclines. Seminars in Oncology, 33, S2–S7.

    Article  CAS  Google Scholar 

  17. Marty, M., Espie, M., Llombart, A., Monnier, A., Rapoport, B.L., & Stahalova, V., Dexrazoxane Study Group. (2006). Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17, 614–622.

    Google Scholar 

  18. Cvtovic, R. C., & Scott, L. J. (2005). Dexrazoxane: A review of its use for cardioprotection during anthracycline chemotherapy. Drugs, 65, 1005–1012.

    Article  Google Scholar 

  19. Northfelt, D. W., Dezube, B. J., & Thommes, J. A., et al (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: Results of a randomized phase III clinical trial. Journal of Clinical Oncology, 16, 2445–2451.

    PubMed  CAS  Google Scholar 

  20. Working, P. K., Newman, M. S., & Huang, S. K., et al (1994). Pharmacokinetics biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth liposomes (Doxil). Journal of Liposome Research, 4, 667–687.

    Google Scholar 

  21. Cheung, T. W., Remick, S. C., Azarnia, N., Proper, J. A., Barrueco, J. R., & Dezube, B. J. (1999). AIDS-related Kaposi’s sarcoma: A phase II study of liposomal doxorubicin. The TLC D-99 Study Group. Clinical Cancer Research, 5, 3432–3437.

    PubMed  CAS  Google Scholar 

  22. Sturzl, M., Zietz C., Eisenburg, B., Goebel, F. D., Gillitzer, R., Hofschneider, P. H., & Bogner, J. R. (1994). Liposomal doxorubicin in the treatment of AIDS-associated Kaposi’s sarcoma: Clinical, histological and cell biological evaluation. Research in Virology, 145, 261–269.

    Article  PubMed  CAS  Google Scholar 

  23. Johnston, S. R. D., & Gore, M. E. (2001). Caelyx: Phase II studies in ovarian cancer. European Journal of Cancer, 37, S8–S14.

    Article  PubMed  CAS  Google Scholar 

  24. Coleman, R. E., Biganzoli, L., & Canney, P. et al (2006). A randomised phase II study of two different schedules of pegylated liposomal doxorubicin in metastatic breast cancer (EORTC-10993). European Journal of Cancer, 42, 882–887.

    Article  PubMed  CAS  Google Scholar 

  25. Lyass, O., Uziely, B., & Ben-Yosef, R. et al (2000). Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer, 89, 1037–1047.

    Article  PubMed  CAS  Google Scholar 

  26. O´Byrne, K. J., Thomas, A. L., & Sharma, R. A., et al (2002). A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. British Journal of Cancer, 87, 15–20.

    Article  CAS  Google Scholar 

  27. Valero, V., & Hortobagyi, G. N. (2003). Are anthracyclines-taxane regimens the new standard of care in the treatment of metastatic breast cancer? Journal of Clinical Oncology, 21, 959–962.

    Article  PubMed  Google Scholar 

  28. Giani, L., Vigano, L., & Locatelli, A., et al (1997). Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. Journal of Clinical Oncology, 15, 1906–1915.

    PubMed  Google Scholar 

  29. Minotti, G., Saponiero, A., & Licata, S., et al (2001). Paclitaxel and docetaxel enhance the metabolism of doxorubicin to toxic species in human myocardium. Clinical Cancer Research, 7, 1511–1515.

    PubMed  CAS  Google Scholar 

  30. Nabholtz, J. M., Falkson, C., & Campos, D., et al (2003). Docetaxel and doxorubicin compared with doxorubicin and cyclophosphamide as first-line chemotherapy for metastatic breast cancer: Results of a randomized, multicenter, phase III trial. Journal of Clinical Oncology, 21, 968–975.

    Article  PubMed  CAS  Google Scholar 

  31. Feldman, A. M., Lorell, B. H., & Reiss, S. E. (2000). Trastuzumab in the treatment of metastatic breast cancer: Anticancer therapy versus cardiotoxicity. Circulation, 102, 272–274.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Cortés-Funes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés-Funes, H., Coronado, C. Role of anthracyclines in the era of targeted therapy. Cardiovasc Toxicol 7, 56–60 (2007). https://doi.org/10.1007/s12012-007-0015-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0015-3

Keywords

Navigation